↓ Skip to main content

A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana

Overview of attention for article published in Frontiers in Plant Science, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
117 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana
Published in
Frontiers in Plant Science, November 2015
DOI 10.3389/fpls.2015.01025
Pubmed ID
Authors

Jaindra N. Tripathi, Richard O. Oduor, Leena Tripathi

Abstract

Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties "Cavendish Williams" and "Gros Michel" were developed using multiple buds, whereas ECS of "Sukali Ndiizi" was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000-50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20-70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 117 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 <1%
Unknown 116 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 19%
Student > Master 20 17%
Researcher 17 15%
Student > Bachelor 11 9%
Student > Doctoral Student 8 7%
Other 8 7%
Unknown 31 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 53 45%
Biochemistry, Genetics and Molecular Biology 17 15%
Chemistry 2 2%
Environmental Science 1 <1%
Social Sciences 1 <1%
Other 3 3%
Unknown 40 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 December 2015.
All research outputs
#15,689,396
of 23,314,015 outputs
Outputs from Frontiers in Plant Science
#11,257
of 21,157 outputs
Outputs of similar age
#229,661
of 389,725 outputs
Outputs of similar age from Frontiers in Plant Science
#201
of 414 outputs
Altmetric has tracked 23,314,015 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 21,157 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 389,725 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 414 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.