↓ Skip to main content

Modulation of Chloride Channel Functions by the Plant Lignan Compounds Kobusin and Eudesmin

Overview of attention for article published in Frontiers in Plant Science, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
2 X users
googleplus
1 Google+ user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modulation of Chloride Channel Functions by the Plant Lignan Compounds Kobusin and Eudesmin
Published in
Frontiers in Plant Science, November 2015
DOI 10.3389/fpls.2015.01041
Pubmed ID
Authors

Yu Jiang, Bo Yu, Fang Fang, Huanhuan Cao, Tonghui Ma, Hong Yang

Abstract

Plant lignans are diphenolic compounds widely present in vegetables, fruits, and grains. These compounds have been demonstrated to have protective effect against cancer, hypertension and diabetes. In the present study, we showed that two lignan compounds, kobusin and eudesmin, isolated from Magnoliae Flos, could modulate intestinal chloride transport mediated by cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCCs). The compounds activated CFTR channel function in both FRT cells and in HT-29 cells. The modulating effects of kobusin and eudesmin on the activity of CaCCgie (CaCC expressed in gastrointestinal epithelial cells) were also investigated, and the result showed that both compounds could stimulate CaCCgie-mediated short-circuit currents and the stimulation was synergistic with ATP. In ex vivo studies, both compounds activated CFTR and CaCCgie chloride channel activities in mouse colonic epithelia. Remarkably, the compounds showed inhibitory effects toward ANO1/CaCC-mediated short-circuit currents in ANO1/CaCC-expressing FRT cells, with IC50 values of 100 μM for kobusin and 200 μM for eudesmin. In charcoal transit study, both compounds mildly reduced gastrointestinal motility in mice. Taken together, these results revealed a new kind of activity displayed by the lignan compounds, one that is concerned with the modulation of chloride channel function.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 4%
Unknown 24 96%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 12%
Researcher 3 12%
Student > Ph. D. Student 2 8%
Other 1 4%
Lecturer 1 4%
Other 2 8%
Unknown 13 52%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 3 12%
Biochemistry, Genetics and Molecular Biology 2 8%
Agricultural and Biological Sciences 2 8%
Nursing and Health Professions 1 4%
Immunology and Microbiology 1 4%
Other 3 12%
Unknown 13 52%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 August 2016.
All research outputs
#13,959,398
of 22,834,308 outputs
Outputs from Frontiers in Plant Science
#7,275
of 20,146 outputs
Outputs of similar age
#195,912
of 386,751 outputs
Outputs of similar age from Frontiers in Plant Science
#108
of 414 outputs
Altmetric has tracked 22,834,308 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,146 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 386,751 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 414 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.