↓ Skip to main content

Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice

Overview of attention for article published in Frontiers in Plant Science, November 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Citations

dimensions_citation
79 Dimensions

Readers on

mendeley
85 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice
Published in
Frontiers in Plant Science, November 2015
DOI 10.3389/fpls.2015.01056
Pubmed ID
Authors

Carlos Lucena, Francisco J. Romera, María J. García, Esteban Alcántara, Rafael Pérez-Vicente

Abstract

Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 85 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 85 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 27%
Researcher 10 12%
Student > Master 8 9%
Student > Doctoral Student 5 6%
Student > Bachelor 4 5%
Other 10 12%
Unknown 25 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 35 41%
Biochemistry, Genetics and Molecular Biology 18 21%
Chemical Engineering 1 1%
Environmental Science 1 1%
Chemistry 1 1%
Other 1 1%
Unknown 28 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 December 2015.
All research outputs
#3,069,759
of 22,834,308 outputs
Outputs from Frontiers in Plant Science
#1,528
of 20,146 outputs
Outputs of similar age
#53,673
of 387,438 outputs
Outputs of similar age from Frontiers in Plant Science
#17
of 418 outputs
Altmetric has tracked 22,834,308 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 20,146 research outputs from this source. They receive a mean Attention Score of 4.0. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 387,438 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 418 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.