↓ Skip to main content

TaADF3, an Actin-Depolymerizing Factor, Negatively Modulates Wheat Resistance Against Puccinia striiformis

Overview of attention for article published in Frontiers in Plant Science, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
TaADF3, an Actin-Depolymerizing Factor, Negatively Modulates Wheat Resistance Against Puccinia striiformis
Published in
Frontiers in Plant Science, January 2016
DOI 10.3389/fpls.2015.01214
Pubmed ID
Authors

Chunlei Tang, Lin Deng, Dan Chang, Shuntao Chen, Xiaojie Wang, Zhensheng Kang

Abstract

The actin cytoskeleton has been implicated in plant defense against pathogenic fungi, oomycetes, and bacteria. Actin depolymerizing factors (ADFs) are stimulus responsive actin cytoskeleton modulators. However, there is limited evidence linking ADFs with plant defense against pathogens. In this study, we have isolated and functionally characterized a stress-responsive ADF gene (TaADF3) from wheat, which was detectable in all examined wheat tissues. TaADF3 is a three-copy gene located on chromosomes 5AL, 5BL, and 5DL. A particle bombardment assay in onion epidermal cells revealed the cytoplasmic and nuclear localization of TaADF3. The expression of TaADF3 was inducible by abscisic acid (ABA), as well as various abiotic stresses (drought and cold) and virulent Puccinia striiformis f. sp. tritici (Pst) but was down regulated in response to avirulent Pst. Virus-induced silencing of TaADF3 copies enhanced wheat resistance to avirulent Pst, with decreased reactive oxygen species (ROS) accumulation and hypersensitive response (HR). Upon treatment with virulent Pst, TaADF3-knockdown plants exhibited reduced susceptibility, which was accompanied by increased ROS production and HR. Interestingly, the silencing of TaADF3 resulted in hindered pathogen penetration and haustoria formation for both avirulent and virulent Pst. Moreover, the array and distribution of actin filaments was transformed in TaADF3-knockdown epidermal cells, which possibly facilitated attenuating the fungus penetration. Thus, our findings suggest that TaADF3 positively regulates wheat tolerance to abiotic stresses and negatively regulates wheat resistance to Pst in an ROS-dependent manner, possibly underlying the mechanism of impeding fungal penetration dependent on the actin architecture dynamics.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 22%
Researcher 9 18%
Student > Master 8 16%
Student > Bachelor 4 8%
Student > Postgraduate 3 6%
Other 4 8%
Unknown 10 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 49%
Biochemistry, Genetics and Molecular Biology 8 16%
Arts and Humanities 2 4%
Veterinary Science and Veterinary Medicine 1 2%
Computer Science 1 2%
Other 2 4%
Unknown 11 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 February 2016.
All research outputs
#17,782,514
of 22,840,638 outputs
Outputs from Frontiers in Plant Science
#12,030
of 20,160 outputs
Outputs of similar age
#267,832
of 393,708 outputs
Outputs of similar age from Frontiers in Plant Science
#239
of 477 outputs
Altmetric has tracked 22,840,638 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,160 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,708 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 477 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.