↓ Skip to main content

Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains

Overview of attention for article published in Frontiers in Plant Science, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains
Published in
Frontiers in Plant Science, February 2016
DOI 10.3389/fpls.2016.00194
Pubmed ID
Authors

David S. Pescador, Ángela Sierra-Almeida, Pablo J. Torres, Adrián Escudero

Abstract

Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants found in xeric mountains.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 15%
Student > Ph. D. Student 7 13%
Student > Bachelor 7 13%
Student > Master 6 11%
Student > Doctoral Student 4 7%
Other 11 20%
Unknown 11 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 37%
Environmental Science 13 24%
Earth and Planetary Sciences 5 9%
Computer Science 1 2%
Biochemistry, Genetics and Molecular Biology 1 2%
Other 2 4%
Unknown 12 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 February 2016.
All research outputs
#16,721,717
of 25,373,627 outputs
Outputs from Frontiers in Plant Science
#10,995
of 24,597 outputs
Outputs of similar age
#179,407
of 312,984 outputs
Outputs of similar age from Frontiers in Plant Science
#193
of 491 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,597 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,984 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 491 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.