↓ Skip to main content

Natural Variation of Cold Deacclimation Correlates with Variation of Cold-Acclimation of the Plastid Antioxidant System in Arabidopsis thaliana Accessions

Overview of attention for article published in Frontiers in Plant Science, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Natural Variation of Cold Deacclimation Correlates with Variation of Cold-Acclimation of the Plastid Antioxidant System in Arabidopsis thaliana Accessions
Published in
Frontiers in Plant Science, March 2016
DOI 10.3389/fpls.2016.00305
Pubmed ID
Authors

Ilona Juszczak, Jelena Cvetkovic, Ellen Zuther, Dirk K. Hincha, Margarete Baier

Abstract

Temperature variations impact on the balance between photosynthetic electron transport and electron-consuming assimilation reactions and transiently increase generation of reactive oxygen species (ROS). Previous studies demonstrated that the expression of C-repeat binding factors (CBFs), which activate cold acclimation reactions, respond to chloroplast ROS signals and that cold deacclimation is partly halted for days after the transfer of acclimated plants to optimal growth conditions in four Arabidopsis accessions from cold-continental habitats. We hypothesized that these accessions differ from others in the regulation of the plastid antioxidant system (PAS). In the present study, we compared the expression intensity of the 12 most prominent PAS genes for peroxidases, superoxide dismutase and low molecular weight antioxidant regenerating enzymes in 10 Arabidopsis accessions with regulation of CBF and COR (cold regulated genes) transcript levels and cold-regulated metabolite levels prior to cold, after 2 week long cold acclimation and during the first 3 days of deacclimation. In the accessions with prolonged activation of cold responses, by trend, weaker induction of various cold-inducible PAS genes and stronger decreases in the expression of negatively cold-regulated PAS genes were observed. Low PAS gene expression delayed the post-cold decrease in H2O2 levels after transfer of the plants from cold to optimal growth conditions. We conclude that weaker expression of various PAS genes in the cold is an adapted strategy of the Arabidopsis accessions N14, N13, Ms-0, and Kas-1 to avoid full inactivation of cold-responses in the first days after the end of the cold period.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 24%
Student > Ph. D. Student 8 14%
Student > Doctoral Student 6 10%
Student > Bachelor 6 10%
Student > Master 5 8%
Other 6 10%
Unknown 14 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 49%
Biochemistry, Genetics and Molecular Biology 13 22%
Unspecified 1 2%
Computer Science 1 2%
Engineering 1 2%
Other 0 0%
Unknown 14 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 April 2016.
All research outputs
#15,313,489
of 22,856,968 outputs
Outputs from Frontiers in Plant Science
#10,639
of 20,210 outputs
Outputs of similar age
#193,995
of 326,713 outputs
Outputs of similar age from Frontiers in Plant Science
#228
of 516 outputs
Altmetric has tracked 22,856,968 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,210 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,713 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 516 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.