↓ Skip to main content

Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques

Overview of attention for article published in Frontiers in Plant Science, May 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
104 Dimensions

Readers on

mendeley
175 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques
Published in
Frontiers in Plant Science, May 2016
DOI 10.3389/fpls.2016.00678
Pubmed ID
Authors

Andreas Holzinger, Martina Pichrtová

Abstract

Charophyte green algae are a paraphyletic group of freshwater and terrestrial green algae, comprising the classes of Chlorokybophyceae, Coleochaetophyceae, Klebsormidiophyceae, Zygnematophyceae, Mesostigmatophyceae, and Charo- phyceae. Zygnematophyceae (Conjugating green algae) are considered to be closest algal relatives to land plants (Embryophyta). Therefore, they are ideal model organisms for studying stress tolerance mechanisms connected with transition to land, one of the most important events in plant evolution and the Earth's history. In Zygnematophyceae, but also in Coleochaetophyceae, Chlorokybophyceae, and Klebsormidiophyceae terrestrial members are found which are frequently exposed to naturally occurring abiotic stress scenarios like desiccation, freezing and high photosynthetic active (PAR) as well as ultraviolet (UV) irradiation. Here, we summarize current knowledge about various stress tolerance mechanisms including insight provided by pioneer transcriptomic and proteomic studies. While formation of dormant spores is a typical strategy of freshwater classes, true terrestrial groups are stress tolerant in vegetative state. Aggregation of cells, flexible cell walls, mucilage production and accumulation of osmotically active compounds are the most common desiccation tolerance strategies. In addition, high photophysiological plasticity and accumulation of UV-screening compounds are important protective mechanisms in conditions with high irradiation. Now a shift from classical chemical analysis to next-generation genome sequencing, gene reconstruction and annotation, genome-scale molecular analysis using omics technologies followed by computer-assisted analysis will give new insights in a systems biology approach. For example, changes in transcriptome and role of phytohormone signaling in Klebsormidium during desiccation were recently described. Application of these modern approaches will deeply enhance our understanding of stress reactions in an unbiased non-targeted view in an evolutionary context.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 175 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
New Zealand 1 <1%
United States 1 <1%
Brazil 1 <1%
Unknown 172 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 39 22%
Researcher 28 16%
Student > Master 24 14%
Student > Bachelor 17 10%
Student > Doctoral Student 9 5%
Other 22 13%
Unknown 36 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 69 39%
Biochemistry, Genetics and Molecular Biology 35 20%
Environmental Science 10 6%
Engineering 4 2%
Chemical Engineering 3 2%
Other 8 5%
Unknown 46 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 June 2016.
All research outputs
#15,168,964
of 25,373,627 outputs
Outputs from Frontiers in Plant Science
#7,819
of 24,597 outputs
Outputs of similar age
#186,916
of 348,653 outputs
Outputs of similar age from Frontiers in Plant Science
#139
of 538 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,597 research outputs from this source. They receive a mean Attention Score of 3.9. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,653 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 538 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.