↓ Skip to main content

Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana

Overview of attention for article published in Frontiers in Plant Science, May 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana
Published in
Frontiers in Plant Science, May 2016
DOI 10.3389/fpls.2016.00689
Pubmed ID
Authors

Fang Wang, Chen Wang, Yan Yan, Haihong Jia, Xingqi Guo

Abstract

Many changes in development, growth, hormone activity and environmental stimuli responses are mediated by mitogen-activated protein kinase (MAPK) cascades. However, in plants, studies on MAPKs have mainly focused on MPK3, MPK4 and MPK6. Here, a novel group B MAPK gene, GhMPK11, was isolated from cotton (Gossypium hirsutum L.) and characterized. Both promoter and expression pattern analyses revealed that GhMPK11 is involved in defense responses and signaling pathways. GhMPK11 overexpression in Nicotiana benthamiana plants could increase gibberellin 3 (GA3) content through the regulation of GA-related genes. Interestingly, either GhMPK11 overexpression or exogenous GA3 treatment in N. benthamiana plants could enhance the susceptibility of these plants to the infectious pathogens Ralstonia solanacearum and Rhizoctonia solani. Moreover, reactive oxygen species (ROS) accumulation was increased after pathogen infiltration due to the increased expression of ROS-related gene respiratory burst oxidative homologs (RbohB) and the decreased expression or activity of ROS detoxification enzymes regulated by GA3, such as superoxide dismutases (SODs), peroxidases (PODs), catalase (CAT) and glutathione S-transferase (GST). Taken together, these results suggest that GhMPK11 overexpression could enhance the susceptibility of tobacco to pathogen infection through the GA3 signaling pathway via down-regulation of ROS detoxification enzymes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 32%
Student > Ph. D. Student 3 16%
Student > Bachelor 2 11%
Lecturer > Senior Lecturer 1 5%
Student > Master 1 5%
Other 1 5%
Unknown 5 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 42%
Biochemistry, Genetics and Molecular Biology 5 26%
Unknown 6 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2016.
All research outputs
#20,328,845
of 22,873,031 outputs
Outputs from Frontiers in Plant Science
#16,149
of 20,257 outputs
Outputs of similar age
#286,342
of 333,421 outputs
Outputs of similar age from Frontiers in Plant Science
#403
of 530 outputs
Altmetric has tracked 22,873,031 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,257 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,421 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 530 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.