↓ Skip to main content

The Photosynthesis, Na+/K+ Homeostasis and Osmotic Adjustment of Atriplex canescens in Response to Salinity

Overview of attention for article published in Frontiers in Plant Science, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
79 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Photosynthesis, Na+/K+ Homeostasis and Osmotic Adjustment of Atriplex canescens in Response to Salinity
Published in
Frontiers in Plant Science, June 2016
DOI 10.3389/fpls.2016.00848
Pubmed ID
Authors

Ya-Qing Pan, Huan Guo, Suo-Min Wang, Bingyu Zhao, Jin-Lin Zhang, Qing Ma, Hong-Ju Yin, Ai-Ke Bao

Abstract

Atriplex canescens (fourwing saltbush) is a C4 perennial fodder shrub with excellent resistance to salinity. However, the mechanisms underlying the salt tolerance in A. canescens are poorly understood. In this study, 5-weeks-old A. canescens seedlings were treated with various concentrations of external NaCl (0-400 mM). The results showed that the growth of A. canescens seedlings was significantly stimulated by moderate salinity (100 mM NaCl) and unaffected by high salinity (200 or 400 mM NaCl). Furthermore, A. canescens seedlings showed higher photosynthetic capacity under NaCl treatments (except for 100 mM NaCl treatment) with significant increases in net photosynthetic rate and water use efficiency. Under saline conditions, the A. canescens seedlings accumulated more Na(+) in either plant tissues or salt bladders, and also retained relatively constant K(+) in leaf tissues and bladders by enhancing the selective transport capacity for K(+) over Na(+) (ST value) from stem to leaf and from leaf to bladder. External NaCl treatments on A. canescens seedlings had no adverse impact on leaf relative water content, and this resulted from lower leaf osmotic potential under the salinity conditions. The contribution of Na(+) to the leaf osmotic potential (Ψs) was sharply enhanced from 2% in control plants to 49% in plants subjected to 400 mM NaCl. However, the contribution of K(+) to Ψs showed a significant decrease from 34% (control) to 9% under 400 mM NaCl. Interestingly, concentrations of betaine and free proline showed significant increase in the leaves of A. canescens seedlings, these compatible solutes presented up to 12% of contribution to Ψs under high salinity. These findings suggest that, under saline environments, A. canescens is able to enhance photosynthetic capacity, increase Na(+) accumulation in tissues and salt bladders, maintain relative K(+) homeostasis in leaves, and use inorganic ions and compatible solutes for osmotic adjustment which may contribute to the improvement of water status in plant.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 1%
United States 1 1%
Unknown 70 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 24%
Researcher 10 14%
Student > Doctoral Student 5 7%
Student > Bachelor 3 4%
Professor 3 4%
Other 12 17%
Unknown 22 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 40%
Biochemistry, Genetics and Molecular Biology 8 11%
Arts and Humanities 2 3%
Environmental Science 2 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 1%
Other 2 3%
Unknown 28 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 June 2016.
All research outputs
#14,727,496
of 22,877,793 outputs
Outputs from Frontiers in Plant Science
#9,086
of 20,269 outputs
Outputs of similar age
#210,321
of 352,647 outputs
Outputs of similar age from Frontiers in Plant Science
#187
of 527 outputs
Altmetric has tracked 22,877,793 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,269 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,647 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 527 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.