↓ Skip to main content

Overexpression of SlRBZ Results in Chlorosis and Dwarfism through Impairing Chlorophyll, Carotenoid, and Gibberellin Biosynthesis in Tomato

Overview of attention for article published in Frontiers in Plant Science, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Overexpression of SlRBZ Results in Chlorosis and Dwarfism through Impairing Chlorophyll, Carotenoid, and Gibberellin Biosynthesis in Tomato
Published in
Frontiers in Plant Science, June 2016
DOI 10.3389/fpls.2016.00907
Pubmed ID
Authors

Mingqin Fan, Shenghua Gao, Junling Ren, Qihong Yang, Hanxia Li, Changxian Yang, Zhibiao Ye

Abstract

ZFPs play important roles in many biological processes, including plant development, stress response, and phytohormone response. RanBP2-type zinc finger transcription factors have been characterized in animals and humans. However, their functions remain largely unknown in plants. In this study, we identified a RanBP2-type zinc finger protein gene (SlRBZ) in tomato. SlRBZ was constitutively expressed in roots, stems, leaves, flowers, and fruits. The SlRBZ-GFP fused protein was localized in the nucleus. Overexpression of SlRBZ resulted in chlorosis and dwarf phenotypes in tomato. Determination of physiological index showed that chlorophyll, carotenoid, and GAs contents were evidently decreased in transgenic plants. Furthermore, the qRT-PCR and RNA-Seq analyses demonstrated that the transcription of the genes involved in these biosynthesis pathways obviously decreased in SlRBZ-OE plants. In addition, ultrastructural observation by transmission electron microscopy indicated that plastids could not develop into mature chloroplasts with normal chloroplast membrane and thylakoid membrane system in SlRBZ-OE plants. The results suggest that overexpression of SlRBZ may impair the biosynthesis of chlorophyll, carotenoid, and gibberellin through blocking chloroplast development, resulting in chlorosis and dwarfism in tomato.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 16%
Student > Ph. D. Student 3 16%
Student > Master 3 16%
Researcher 2 11%
Student > Doctoral Student 2 11%
Other 1 5%
Unknown 5 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 32%
Chemical Engineering 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Immunology and Microbiology 1 5%
Economics, Econometrics and Finance 1 5%
Other 2 11%
Unknown 7 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2016.
All research outputs
#17,810,002
of 22,879,161 outputs
Outputs from Frontiers in Plant Science
#12,078
of 20,270 outputs
Outputs of similar age
#252,926
of 352,770 outputs
Outputs of similar age from Frontiers in Plant Science
#268
of 536 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,270 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,770 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 536 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.