↓ Skip to main content

Primitive Extracellular Lipid Components on the Surface of the Charophytic Alga Klebsormidium flaccidum and Their Possible Biosynthetic Pathways as Deduced from the Genome Sequence

Overview of attention for article published in Frontiers in Plant Science, June 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
68 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Primitive Extracellular Lipid Components on the Surface of the Charophytic Alga Klebsormidium flaccidum and Their Possible Biosynthetic Pathways as Deduced from the Genome Sequence
Published in
Frontiers in Plant Science, June 2016
DOI 10.3389/fpls.2016.00952
Pubmed ID
Authors

Satoshi Kondo, Koichi Hori, Yuko Sasaki-Sekimoto, Atsuko Kobayashi, Tsubasa Kato, Naoko Yuno-Ohta, Takashi Nobusawa, Kinuka Ohtaka, Mie Shimojima, Hiroyuki Ohta

Abstract

Klebsormidium flaccidum is a charophytic alga living in terrestrial and semiaquatic environments. K. flaccidum grows in various habitats, such as low-temperature areas and under desiccated conditions, because of its ability to tolerate harsh environments. Wax and cuticle polymers that contribute to the cuticle layer of plants are important for the survival of land plants, as they protect against those harsh environmental conditions and were probably critical for the transition from aquatic microorganism to land plants. Bryophytes, non-vascular land plants, have similar, but simpler, extracellular waxes and polyester backbones than those of vascular plants. The presence of waxes in terrestrial algae, especially in charophytes, which are the closest algae to land plants, could provide clues in elucidating the mechanism of land colonization by plants. Here, we compared genes involved in the lipid biosynthetic pathways of Arabidopsis thaliana to the K. flaccidum and the Chlamydomonas reinhardtii genomes, and identified wax-related genes in both algae. A simple and easy extraction method was developed for the recovery of the surface lipids from K. flaccidum and C. reinhardtii. Although these algae have wax components, their surface lipids were largely different from those of land plants. We also investigated aliphatic substances in the cell wall fraction of K. flaccidum and C. reinhardtii. Many of the fatty acids were determined to be lipophilic monomers in K. flaccidum, and a Fourier transform infrared spectroscopic analysis revealed that their possible binding mode was distinct from that of A. thaliana. Thus, we propose that K. flaccidum has a cuticle-like hydrophobic layer composed of lipids and glycoproteins, with a different composition from the cutin polymer typically found in land plant cuticles.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 1%
Unknown 67 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 19%
Researcher 11 16%
Student > Master 7 10%
Student > Bachelor 5 7%
Other 4 6%
Other 9 13%
Unknown 19 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 29%
Agricultural and Biological Sciences 20 29%
Environmental Science 3 4%
Engineering 2 3%
Psychology 1 1%
Other 3 4%
Unknown 19 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 June 2016.
All research outputs
#20,335,423
of 22,880,230 outputs
Outputs from Frontiers in Plant Science
#16,165
of 20,270 outputs
Outputs of similar age
#304,561
of 351,542 outputs
Outputs of similar age from Frontiers in Plant Science
#405
of 526 outputs
Altmetric has tracked 22,880,230 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,270 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 351,542 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 526 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.