↓ Skip to main content

Plant Recycling for Molecular Biofarming to Produce Recombinant Anti-Cancer mAb

Overview of attention for article published in Frontiers in Plant Science, July 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Plant Recycling for Molecular Biofarming to Produce Recombinant Anti-Cancer mAb
Published in
Frontiers in Plant Science, July 2016
DOI 10.3389/fpls.2016.01037
Pubmed ID
Authors

Deuk-Su Kim, Ilchan Song, Jinhee Kim, Do-Sun Kim, Kisung Ko

Abstract

The expression and glycosylation patterns of anti-colorectal cancer therapeutic monoclonal antibody (mAb) CO17-1A recognizing the tumor-associated antigen GA733-2, expressed in human colorectal carcinoma cells, were observed in the leaf and stem tissues of primary (0 cycle), secondary (1 cycle), and tertiary (2 cycle) growths of seedlings obtained from the stem cut of T2 plants. The bottom portion of the stem of T2 seedlings was cut to induce the 1 cycle shoot growth, which was again cut to induce the 2 cycle shoot growth. In the 1 and 2 cycle growths, the periods for floral organ formation (35 days) was shorter than that (100 days) for the 0 cycle growth. The genes of heavy and light chains of mAb CO17-1A existed at the top, middle, and basal portions of the leaves and stem obtained from the 0, 1, and 2 cycle plants. The protein levels in the leaves and stem tissues from the 1 and 2 cycles were similar to those in the tissues from the 0 cycle. The glycosylation level and pattern in the leaf and stem did not alter dramatically over the different cycles. Surface plasmon resonance (SPR) confirmed that mAbs CO17-1A obtained from leaf and stem tissues of the 0, 1, and 2 cycles had similar binding affinity for the GA733-2 antigen. These data suggest that the shoot growth by bottom stem cutting is applicable to speed up the growth of plant biomass expressing anti-colorectal cancer mAb without variation of expression, glycosylation, and functionality.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 27%
Professor 1 9%
Student > Bachelor 1 9%
Student > Master 1 9%
Unknown 5 45%
Readers by discipline Count As %
Medicine and Dentistry 2 18%
Biochemistry, Genetics and Molecular Biology 2 18%
Chemical Engineering 1 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 9%
Unknown 5 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 July 2016.
All research outputs
#20,335,770
of 22,880,691 outputs
Outputs from Frontiers in Plant Science
#16,164
of 20,270 outputs
Outputs of similar age
#317,191
of 363,150 outputs
Outputs of similar age from Frontiers in Plant Science
#425
of 537 outputs
Altmetric has tracked 22,880,691 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,270 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 363,150 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 537 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.