↓ Skip to main content

Novel In vitro Procedures for Rearing a Root-Feeding Pest (Heteronychus arator) of Grasslands

Overview of attention for article published in Frontiers in Plant Science, August 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Novel In vitro Procedures for Rearing a Root-Feeding Pest (Heteronychus arator) of Grasslands
Published in
Frontiers in Plant Science, August 2016
DOI 10.3389/fpls.2016.01316
Pubmed ID
Authors

Ivan Hiltpold, Ben D Moore, Scott N Johnson

Abstract

Optimizing plant protection against insect herbivory relies on testing plant defense mechanisms and how the insect response to these defensive strategies. Such experiments benefit from using insects generated from standardized rearing protocols since this reduces stochastic variation. Such protocols can be challenging to devise, however, especially for root herbivores. These insects generally have complex and long life cycles, which are often only poorly described. Moreover, using field-captured root herbivores is often suboptimal because it involves extensive excavation from sites selected by chance (their location is not obvious) and larval stages are frequently indistinguishable beyond the family level. We investigated in vitro procedures to improve the availability of the African Black Beetle (ABB) Heteronychus arator, an invasive alien pest in both Australia and New Zealand. Native to Africa, this scarab beetle has established in Australian and New Zealand grasslands, pastures, and crops. Adults feed on the stem of young plants just beneath the soil surface. During the mating season, gravid females lay eggs in the soil, giving rise to larvae feeding on grass roots, causing severe damage, and impairing plant growth. Here, we propose laboratory approaches to collect eggs from field-captured adult beetles, to hatch eggs, and to rear neonate larvae to adults. We propose that these methods will provide plant scientists and entomologists with a better and more controlled supply of ABB larvae for laboratory and field assays. In turn, this will assist with the collection of important information for the management of this insect pest and enhanced protection of plants in crop and grassland ecosystems.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 33%
Student > Ph. D. Student 4 19%
Other 1 5%
Student > Doctoral Student 1 5%
Student > Postgraduate 1 5%
Other 3 14%
Unknown 4 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 43%
Environmental Science 2 10%
Earth and Planetary Sciences 2 10%
Biochemistry, Genetics and Molecular Biology 1 5%
Social Sciences 1 5%
Other 1 5%
Unknown 5 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 September 2016.
All research outputs
#18,471,305
of 22,888,307 outputs
Outputs from Frontiers in Plant Science
#13,824
of 20,287 outputs
Outputs of similar age
#257,862
of 336,879 outputs
Outputs of similar age from Frontiers in Plant Science
#265
of 429 outputs
Altmetric has tracked 22,888,307 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,287 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,879 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 429 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.