↓ Skip to main content

Tubulin C-terminal Post-translational Modifications Do Not Occur in Wood Forming Tissue of Populus

Overview of attention for article published in Frontiers in Plant Science, October 2016
Altmetric Badge

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tubulin C-terminal Post-translational Modifications Do Not Occur in Wood Forming Tissue of Populus
Published in
Frontiers in Plant Science, October 2016
DOI 10.3389/fpls.2016.01493
Pubmed ID
Authors

Hao Hu, Xi Gu, Liang-Jiao Xue, Prashant S. Swamy, Scott A. Harding, Chung-Jui Tsai

Abstract

Cortical microtubules (MTs) are evolutionarily conserved cytoskeletal components with specialized roles in plants, including regulation of cell wall biogenesis. MT functions and dynamics are dictated by the composition of their monomeric subunits, α- (TUA) and β-tubulins (TUB), which in animals and protists are subject to both transcriptional regulation and post-translational modifications (PTM). While spatiotemporal regulation of tubulin gene expression has been reported in plants, whether and to what extent tubulin PTMs occur in these species remain poorly understood. We chose the woody perennial Populus for investigation of tubulin PTMs in this study, with a particular focus on developing xylem where high tubulin transcript levels support MT-dependent secondary cell wall deposition. Mass spectrometry and immunodetection concurred that detyrosination, non-tyrosination and glutamylation were essentially absent in tubulins isolated from wood-forming tissues of P. deltoides and P. tremula ×alba. Label-free quantification of tubulin isotypes and RNA-Seq estimation of tubulin transcript abundance were largely consistent with transcriptional regulation. However, two TUB isotypes were detected at noticeably lower levels than expected based on RNA-Seq transcript abundance in both Populus species. These findings led us to conclude that MT composition during wood formation depends exclusively on transcriptional and, to a lesser extent, translational regulation of tubulin isotypes.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 31%
Researcher 2 15%
Student > Bachelor 2 15%
Unspecified 1 8%
Student > Master 1 8%
Other 1 8%
Unknown 2 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 38%
Agricultural and Biological Sciences 4 31%
Computer Science 1 8%
Unspecified 1 8%
Unknown 2 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 October 2016.
All research outputs
#18,475,157
of 22,893,031 outputs
Outputs from Frontiers in Plant Science
#13,832
of 20,304 outputs
Outputs of similar age
#241,691
of 319,475 outputs
Outputs of similar age from Frontiers in Plant Science
#244
of 397 outputs
Altmetric has tracked 22,893,031 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,304 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,475 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 397 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.