↓ Skip to main content

Mg-Protoporphyrin IX Signals Enhance Plant’s Tolerance to Cold Stress

Overview of attention for article published in Frontiers in Plant Science, October 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mg-Protoporphyrin IX Signals Enhance Plant’s Tolerance to Cold Stress
Published in
Frontiers in Plant Science, October 2016
DOI 10.3389/fpls.2016.01545
Pubmed ID
Authors

Zhong-Wei Zhang, Zi-Li Wu, Ling-Yang Feng, Li-Hua Dong, An-Jun Song, Ming Yuan, Yang-Er Chen, Jian Zeng, Guang-Deng Chen, Shu Yuan

Abstract

The relationship between Mg-protoporphyrin IX (Mg-Proto IX) signals and plant's tolerance to cold stress is investigated. Arabidopsis seedlings grown for 3 weeks were pretreated with 2 mM glutamate (Glu) and 2 mM MgCl2 for 48 h at room temperature to induce Mg-Proto IX accumulation. Then cold stress was performed at 4°C for additional 72 h. Glu + MgCl2 pre-treatments alleviated the subsequent cold stress significantly by rising the leaf temperature through inducing Mg-Proto IX signals. The protective role of Glu + MgCl2 treatment was greatly compromised in the mutants of Mg-Proto IX synthesis, Mg-Proto IX signaling, and cyanide-resistant respiration. And the enhancement of cold-responsive gene expression was greatly compromised in the mutants of Mg-Proto IX synthesis, Mg-Proto IX signaling and ABA signaling, but not in the mutant of cyanide-resistant respiration. Cold stress promoted cyanide-resistant respiration and leaf total respiration exponentially, which could be further induced by the Glu + MgCl2 treatment. Mg-Proto IX signals also activate antioxidant enzymes and increase non-enzymatic antioxidants [glutathione but not ascorbic acid (AsA)] to maintain redox equilibrium during the cold stress.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
New Zealand 1 5%
Unknown 21 95%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 23%
Student > Ph. D. Student 4 18%
Researcher 3 14%
Student > Bachelor 2 9%
Other 1 5%
Other 3 14%
Unknown 4 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 45%
Biochemistry, Genetics and Molecular Biology 4 18%
Immunology and Microbiology 1 5%
Economics, Econometrics and Finance 1 5%
Chemistry 1 5%
Other 0 0%
Unknown 5 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 October 2016.
All research outputs
#17,823,285
of 22,896,955 outputs
Outputs from Frontiers in Plant Science
#12,106
of 20,304 outputs
Outputs of similar age
#225,859
of 316,298 outputs
Outputs of similar age from Frontiers in Plant Science
#197
of 390 outputs
Altmetric has tracked 22,896,955 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,304 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,298 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 390 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.