↓ Skip to main content

Transcriptome Dynamics in Mango Fruit Peel Reveals Mechanisms of Chilling Stress

Overview of attention for article published in Frontiers in Plant Science, October 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
90 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptome Dynamics in Mango Fruit Peel Reveals Mechanisms of Chilling Stress
Published in
Frontiers in Plant Science, October 2016
DOI 10.3389/fpls.2016.01579
Pubmed ID
Authors

Velu Sivankalyani, Noa Sela, Oleg Feygenberg, Hanita Zemach, Dalia Maurer, Noam Alkan

Abstract

Cold storage is considered the most effective method for prolonging fresh produce storage. However, subtropical fruit is sensitive to cold. Symptoms of chilling injury (CI) in mango include red and black spots that start from discolored lenticels and develop into pitting. The response of 'Keitt' mango fruit to chilling stress was monitored by transcriptomic, physiological, and microscopic analyses. Transcriptomic changes in the mango fruit peel were evaluated during optimal (12°C) and suboptimal (5°C) cold storage. Two days of chilling stress upregulated genes involved in the plant stress response, including those encoding transmembrane receptors, calcium-mediated signal transduction, NADPH oxidase, MAP kinases, and WRKYs, which can lead to cell death. Indeed, cell death was observed around the discolored lenticels after 19 days of cold storage at 5°C. Localized cell death and cuticular opening in the lumen of discolored lenticels were correlated with increased general decay during shelf-life storage, possibly due to fungal penetration. We also observed increased phenolics accumulation around the discolored lenticels, which was correlated with the biosynthesis of phenylpropanoids that were probably transported from the resin ducts. Increased lipid peroxidation was observed during CI by both the biochemical malondialdehyde method and a new non-destructive luminescent technology, correlated to upregulation of the α-linolenic acid oxidation pathway. Genes involved in sugar metabolism were also induced, possibly to maintain osmotic balance. This analysis provides an in-depth characterization of mango fruit response to chilling stress and could lead to the development of new tools, treatments and strategies to prolong cold storage of subtropical fruit.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 90 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 90 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 17%
Researcher 13 14%
Student > Bachelor 10 11%
Student > Master 7 8%
Professor > Associate Professor 4 4%
Other 10 11%
Unknown 31 34%
Readers by discipline Count As %
Agricultural and Biological Sciences 31 34%
Biochemistry, Genetics and Molecular Biology 11 12%
Engineering 5 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 2%
Nursing and Health Professions 1 1%
Other 6 7%
Unknown 34 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 June 2017.
All research outputs
#13,407,768
of 22,896,955 outputs
Outputs from Frontiers in Plant Science
#6,465
of 20,304 outputs
Outputs of similar age
#164,658
of 315,898 outputs
Outputs of similar age from Frontiers in Plant Science
#91
of 390 outputs
Altmetric has tracked 22,896,955 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,304 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,898 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 390 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.