↓ Skip to main content

Gene-Metabolite Networks of Volatile Metabolism in Airen and Tempranillo Grape Cultivars Revealed a Distinct Mechanism of Aroma Bouquet Production

Overview of attention for article published in Frontiers in Plant Science, October 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

twitter
5 X users
facebook
1 Facebook page

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Gene-Metabolite Networks of Volatile Metabolism in Airen and Tempranillo Grape Cultivars Revealed a Distinct Mechanism of Aroma Bouquet Production
Published in
Frontiers in Plant Science, October 2016
DOI 10.3389/fpls.2016.01619
Pubmed ID
Authors

José L. Rambla, Almudena Trapero-Mozos, Gianfranco Diretto, Angela Rubio-Moraga, Antonio Granell, Lourdes Gómez-Gómez, Oussama Ahrazem

Abstract

Volatile compounds are the major determinants of aroma and flavor in both grapes and wine. In this study, we investigated the emission of volatile and non-volatile compounds during berry maturation in two grape varieties (Airén and Tempranillo) throughout 2010 and 2011. HS-SPME coupled to gas chromatography and mass spectrometry was applied for the identification and relative quantitation of these compounds. Principal component analysis was performed to search for variability between the two cultivars and evolution during 10 developmental stages. Results showed that there are distinct differences in volatile compounds between cultivars throughout fruit development. Early stages were characterized in both cultivars by higher levels of some apocarotenoids such as β-cyclocitral or β-ionone, terpenoids (E)-linalool oxide and (Z)-linalool oxide and several furans, while the final stages were characterized by the highest amounts of ethanol, benzenoid phenylacetaldehyde and 2-phenylethanol, branched-amino acid-derived 3-methylbutanol and 2-methylbutanol, and a large number of lipid derivatives. Additionally, we measured the levels of the different classes of volatile precursors by using liquid chromatography coupled to high resolution mass spectrometry. In both varieties, higher levels of carotenoid compounds were detected in the earlier stages, zeaxanthin and α-carotene were only detected in Airén while neoxanthin was found only in Tempranillo; more variable trends were observed in the case of the other volatile precursors. Furthermore, we monitored the expression of homolog genes of a set of transcripts potentially involved in the biosynthesis of these metabolites, such as some glycosyl hydrolases family 1, lipoxygenases, alcohol dehydrogenases hydroperoxide lyases, O-methyltransferases and carotenoid cleavage dioxygenases during the defined developmental stages. Finally, based on Pearson correlation analyses, we explored the metabolite-metabolite fluctuations within VOCs/precursors during the berry development; as well as tentatively linking the formation of some metabolites detected to the expression of some of these genes. Our data showed that the two varieties displayed a very different pattern of relationships regarding the precursor/volatile metabolite-metabolite fluctuations, being the lipid and the carotenoid metabolism the most distinctive between the two varieties. Correlation analysis showed a higher degree of overall correlation in precursor/volatile metabolite-metabolite levels in Airén, confirming the enriched aroma bouquet characteristic of the white varieties.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 67 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 21%
Student > Ph. D. Student 12 18%
Student > Bachelor 7 10%
Student > Doctoral Student 5 7%
Student > Master 5 7%
Other 10 15%
Unknown 14 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 35 52%
Biochemistry, Genetics and Molecular Biology 6 9%
Chemistry 3 4%
Engineering 2 3%
Medicine and Dentistry 2 3%
Other 4 6%
Unknown 15 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2017.
All research outputs
#13,133,774
of 22,896,955 outputs
Outputs from Frontiers in Plant Science
#5,905
of 20,310 outputs
Outputs of similar age
#158,534
of 314,207 outputs
Outputs of similar age from Frontiers in Plant Science
#87
of 416 outputs
Altmetric has tracked 22,896,955 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,310 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,207 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 416 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.