↓ Skip to main content

Cadmium Accumulation Characteristics in Turnip Landraces from China and Assessment of Their Phytoremediation Potential for Contaminated Soils

Overview of attention for article published in Frontiers in Plant Science, December 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cadmium Accumulation Characteristics in Turnip Landraces from China and Assessment of Their Phytoremediation Potential for Contaminated Soils
Published in
Frontiers in Plant Science, December 2016
DOI 10.3389/fpls.2016.01862
Pubmed ID
Authors

Xiong Li, Xiaoming Zhang, Ya Yang, Boqun Li, Yuansheng Wu, Hang Sun, Yongping Yang

Abstract

Heavy metal (HM) pollution is a global environmental problem that threatens ecosystem and human health. Cadmium (Cd) pollution is the most prominent HM pollution type because of its high toxicity, strong migration, and the large polluted area globally. Phytoremediation of contaminated soil is frequently practiced because of its cost-effectiveness and operability and because it has no associated secondary pollution. High-accumulation plants, including those identified as hyperaccumulators, play an important role in phytoremediation. Therefore, screening of plants to identify hyperaccumulators is important for continued phytoremediation. In the present study, we investigated the Cd tolerance and accumulation capabilities of 18 turnip landraces from China under a soil experiment with known Cd level. The results indicated that turnip has a high capacity for Cd accumulation. Furthermore, significant differences in Cd tolerance and accumulation characteristics were found among different landraces when they grew at 50 mg kg(-1) (dry weight) Cd concentration. Among the studied landraces, five turnip landraces met the requirements of Cd hyperaccumulators and three landraces were identified as potential candidates. However, the total Cd content accumulated by individual plant of different turnip landraces was dependent on both the Cd accumulation capacity and plant biomass. Compared with some reported Cd hyperaccumulators, turnip not only shows a high Cd-accumulation capacity but also has rapid growth and a wide distribution area. These advantages indicate that turnip may have considerable potential for phytoremediation of Cd-contaminated soil. Furthermore, the study also indicates that it is not advisable to consume turnip cultivated in an environment that exceeds safe Cd levels.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 15%
Student > Bachelor 6 11%
Student > Master 5 9%
Researcher 4 7%
Student > Doctoral Student 2 4%
Other 7 13%
Unknown 22 41%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 15%
Environmental Science 7 13%
Biochemistry, Genetics and Molecular Biology 4 7%
Engineering 2 4%
Earth and Planetary Sciences 2 4%
Other 4 7%
Unknown 27 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 December 2016.
All research outputs
#20,365,559
of 22,914,829 outputs
Outputs from Frontiers in Plant Science
#16,236
of 20,345 outputs
Outputs of similar age
#353,558
of 419,358 outputs
Outputs of similar age from Frontiers in Plant Science
#362
of 485 outputs
Altmetric has tracked 22,914,829 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,345 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,358 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 485 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.