↓ Skip to main content

Cytosolic Triosephosphate Isomerase from Arabidopsis thaliana Is Reversibly Modified by Glutathione on Cysteines 127 and 218

Overview of attention for article published in Frontiers in Plant Science, December 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cytosolic Triosephosphate Isomerase from Arabidopsis thaliana Is Reversibly Modified by Glutathione on Cysteines 127 and 218
Published in
Frontiers in Plant Science, December 2016
DOI 10.3389/fpls.2016.01942
Pubmed ID
Authors

Sébastien Dumont, Natalia V. Bykova, Guillaume Pelletier, Sonia Dorion, Jean Rivoal

Abstract

In plant cells, an increase in cellular oxidants can have multiple effects, including the promotion of mixed disulfide bonds between glutathione and some proteins (S-glutathionylation). The present study focuses on the cytosolic isoform of the glycolytic enzyme triosephosphate isomerase (cTPI) from Arabidopsis thaliana and its reversible modification by glutathione. We used purified recombinant cTPI to demonstrate the enzyme sensitivity to inhibition by N-ethylmaleimide, hydrogen peroxide and diamide. Treatment of cTPI with diamide in the presence of reduced glutathione (GSH) led to a virtually complete inhibition of its enzymatic activity by S-glutathionylation. Recombinant cTPI was also sensitive to the oxidized form of glutathione (GSSG) in the micromolar range. Activity of cTPI was restored after reversion of S-glutathionylation by two purified recombinant A. thaliana cytosolic glutaredoxins (GRXs). GRXs-mediated deglutathionylation of cTPI was dependent on a GSH-regenerating system. Analysis of cTPI by mass spectrometry after S-glutathionylation by GSSG revealed that two Cys residues (Cys127 and Cys218) were modified by glutathione. The role of these two residues was assessed using site-directed mutagenesis. Mutation of Cys127 and Cys218 to Ser separately or together caused different levels of decrease in enzyme activity, loss of stability, as well as alteration of intrinsic fluorescence, underlining the importance of these Cys residues in protein conformation. Comparison of wild-type and mutant proteins modified with biotinyl glutathione ethyl ester (BioGEE) showed partial binding with single mutants and total loss of binding with the double mutant, demonstrating that both Cys residues were significantly S-glutathionylated. cTPI modification with BioGEE was reversed using DTT. Our study provides the first identification of the amino acid residues involved in cTPI S-glutathionylation and supports the hypothesis that this reversible modification could be part of an oxidative stress response pathway.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 19%
Researcher 5 16%
Student > Ph. D. Student 5 16%
Student > Postgraduate 4 13%
Professor 3 9%
Other 3 9%
Unknown 6 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 38%
Biochemistry, Genetics and Molecular Biology 9 28%
Environmental Science 1 3%
Medicine and Dentistry 1 3%
Chemistry 1 3%
Other 0 0%
Unknown 8 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 January 2017.
All research outputs
#20,382,391
of 22,931,367 outputs
Outputs from Frontiers in Plant Science
#16,248
of 20,360 outputs
Outputs of similar age
#355,197
of 420,769 outputs
Outputs of similar age from Frontiers in Plant Science
#368
of 499 outputs
Altmetric has tracked 22,931,367 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,360 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,769 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 499 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.