↓ Skip to main content

Effects of Low pH on Photosynthesis, Related Physiological Parameters, and Nutrient Profiles of Citrus

Overview of attention for article published in Frontiers in Plant Science, February 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
107 Dimensions

Readers on

mendeley
117 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of Low pH on Photosynthesis, Related Physiological Parameters, and Nutrient Profiles of Citrus
Published in
Frontiers in Plant Science, February 2017
DOI 10.3389/fpls.2017.00185
Pubmed ID
Authors

An Long, Jiang Zhang, Lin-Tong Yang, Xin Ye, Ning-Wei Lai, Ling-Ling Tan, Dan Lin, Li-Song Chen

Abstract

Seedlings of "Xuegan" (Citrus sinensis) and "Sour pummelo" (Citrus grandis) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H2O2 production and electrolyte leakage in roots and leaves. This was done (a) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and (b) to understand the mechanisms by which low pH may cause a decrease in leaf CO2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H(+)-toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H(+)-toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP) transients and many fluorescence parameters, root and leaf total soluble proteins, H2O2 production, and electrolyte leakage were all slightly greater in C. grandis than in C. sinensis seedlings. Hence, C. sinensis was slightly more tolerant to low pH than C. grandis. In conclusion, our findings provide novel insight into the causes of low pH-induced inhibition of seedling growth and leaf CO2 assimilation.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 117 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 117 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 21 18%
Researcher 13 11%
Student > Bachelor 11 9%
Student > Ph. D. Student 11 9%
Student > Doctoral Student 5 4%
Other 14 12%
Unknown 42 36%
Readers by discipline Count As %
Agricultural and Biological Sciences 37 32%
Environmental Science 11 9%
Biochemistry, Genetics and Molecular Biology 5 4%
Unspecified 4 3%
Chemical Engineering 3 3%
Other 12 10%
Unknown 45 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2017.
All research outputs
#17,884,576
of 22,961,203 outputs
Outputs from Frontiers in Plant Science
#12,141
of 20,389 outputs
Outputs of similar age
#224,207
of 310,765 outputs
Outputs of similar age from Frontiers in Plant Science
#314
of 511 outputs
Altmetric has tracked 22,961,203 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,389 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,765 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 511 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.