↓ Skip to main content

Verticillium dahliae’s Isochorismatase Hydrolase Is a Virulence Factor That Contributes to Interference With Potato’s Salicylate and Jasmonate Defense Signaling

Overview of attention for article published in Frontiers in Plant Science, March 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Verticillium dahliae’s Isochorismatase Hydrolase Is a Virulence Factor That Contributes to Interference With Potato’s Salicylate and Jasmonate Defense Signaling
Published in
Frontiers in Plant Science, March 2017
DOI 10.3389/fpls.2017.00399
Pubmed ID
Authors

Xiaohan Zhu, Atta Soliman, Md R Islam, Lorne R Adam, Fouad Daayf

Abstract

This study aimed to dissect the function of the Isochorismatase Hydrolase (ICSH1) gene in Verticillium dahliae's pathogenesis on potato. VdICSH1 was up-regulated in V. dahliae after induction with extracts from potato tissues. Its expression increased more in response to root extracts than to leaf and stem extracts. However, such expression in response to root extracts was not significantly different in the highly and weakly aggressive isolates tested. During infection of detached potato leaves, VdICSH1 expression increased significantly in the highly aggressive isolate compared to the weakly aggressive one. We generated icsh1 mutants from a highly aggressive isolate of V. dahliae and compared their pathogenicity with that of the original wild type strain. The analysis showed that this gene is required for full virulence of V. dahliae on potatoes. When we previously found differential accumulation of ICSH1 protein in favor of the highly aggressive isolate, as opposed to the weakly aggressive one, we had hypothesized that ICSH would interfere with the host's defense SA-based signaling. Here, we measured the accumulation of both salicylic acid (SA) and jasmonic acid (JA) in potato plants inoculated with an icsh1 mutant in comparison with the wild type strain. The higher accumulation of bound SA in the leaves in response to the icsh1 mutant compared to the wild type confirms the hypothesis that ICSH1 interferes with SA. However, the different trends in SA and JA accumulation in potato in the roots and in the stems at the early infection stages compared to the leaves at later stages indicate that they are both associated to potato defenses against V. dahliae. The expression of members of the isochorismatase family in the icsh1 mutants compensate that of ICSH1 transcripts, but this compensation disappears in presence of the potato leaf extracts. This study indicates ICSH1's involvement in V. dahliae's pathogenicity and provides more insight into its alteration of the SA/JA defense signaling's networking.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 31%
Researcher 7 22%
Student > Doctoral Student 3 9%
Student > Master 2 6%
Professor 2 6%
Other 4 13%
Unknown 4 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 69%
Biochemistry, Genetics and Molecular Biology 4 13%
Computer Science 1 3%
Unspecified 1 3%
Unknown 4 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 April 2017.
All research outputs
#20,413,129
of 22,963,381 outputs
Outputs from Frontiers in Plant Science
#16,287
of 20,392 outputs
Outputs of similar age
#268,920
of 308,503 outputs
Outputs of similar age from Frontiers in Plant Science
#447
of 535 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,392 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,503 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 535 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.