↓ Skip to main content

Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Increased Potassium Content and Expression of Genes Encoding Potassium Channels in Lycium barbarum

Overview of attention for article published in Frontiers in Plant Science, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
58 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Increased Potassium Content and Expression of Genes Encoding Potassium Channels in Lycium barbarum
Published in
Frontiers in Plant Science, March 2017
DOI 10.3389/fpls.2017.00440
Pubmed ID
Authors

Haoqiang Zhang, Suzhen Wei, Wentao Hu, Longmin Xiao, Ming Tang

Abstract

Potassium in plants accounts for up to 10% dry weight, and participates in different physiological processes. Under drought stress, plant requires more potassium but potassium availability in soil solutes is lowered by decreased soil water content. Forming symbiosis with arbuscular mycorrhizal (AM) fungi not only enlarges exploration range of plant for mineral nutrients and water in soil, but also improves plant drought tolerance. However, the regulation of AM fungi on plant root potassium uptake and translocation from root to shoot was less reported. In current study, the effect of an AM fungus (Rhizophagus irregularis), potassium application (0, 2, and 8 mM), and drought stress (30% field capacity) on Lycium barbarum growth and potassium status was analyzed. Ten weeks after inoculation, R. irregularis colonized more than 58% roots of L. barbarum seedlings, and increased plant growth as well as potassium content. Potassium application increased colonization rate of R. irregularis, plant growth, potassium content, and decreased root/shoot ratio. Drought stress increased colonization rate of R. irregularis and potassium content. Expression of two putative potassium channel genes in root, LbKT1 and LbSKOR, was positively correlated with potassium content in root and leaves, as well as the colonization rate of R. irregularis. The increased L. barbarum growth, potassium content and genes expression, especially under drought stress, suggested that R. irregularis could improve potassium uptake of L. barbarum root and translocation from root to shoot. Whether AM fungi could form a specific mycorrhizal pathway for plant potassium uptake deserves further studies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 72 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 24%
Student > Bachelor 12 17%
Student > Master 8 11%
Researcher 4 6%
Professor > Associate Professor 3 4%
Other 10 14%
Unknown 18 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 37 51%
Biochemistry, Genetics and Molecular Biology 5 7%
Environmental Science 3 4%
Computer Science 2 3%
Engineering 2 3%
Other 4 6%
Unknown 19 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 July 2017.
All research outputs
#14,059,145
of 22,965,074 outputs
Outputs from Frontiers in Plant Science
#7,343
of 20,392 outputs
Outputs of similar age
#167,409
of 308,773 outputs
Outputs of similar age from Frontiers in Plant Science
#234
of 535 outputs
Altmetric has tracked 22,965,074 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,392 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,773 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 535 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.