↓ Skip to main content

Expression Analyses of Embryogenesis-Associated Genes during Somatic Embryogenesis of Adiantum capillus-veneris L. In vitro: New Insights into the Evolution of Reproductive Organs in Land Plants

Overview of attention for article published in Frontiers in Plant Science, April 2017
Altmetric Badge

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Expression Analyses of Embryogenesis-Associated Genes during Somatic Embryogenesis of Adiantum capillus-veneris L. In vitro: New Insights into the Evolution of Reproductive Organs in Land Plants
Published in
Frontiers in Plant Science, April 2017
DOI 10.3389/fpls.2017.00658
Pubmed ID
Authors

Xia Li, Jing-Dan Han, Yu-Han Fang, Shu-Nong Bai, Guang-Yuan Rao

Abstract

An efficient in vitro regeneration system via somatic embryogenesis (SE) was developed for a fern species Adiantum capillus-veneris. Adventitious shoots, green globular bodies (GGBs) and calli were obtained with the maximal induction rate on the Murashige and Skoog (MS) medium of low concentrations of 6-benzyladenine (BA) (0-1.0 mg/L), 2.0 mg/L BA without 2,4-dichlorophenoxyacetic acid (2,4-D), 0.5 mg/L 2,4-D and 0.5-1.0 mg/L 6-BA, respectively. Cyto-morphological and histological changes in the shoot development via calli and GGBs were examined. For a better understanding of these developmental events, expression patterns of six genes, AcLBD16, AcAGL, AcBBM, AcWUS, AcRKD, and AcLEC1, were characterized during SE. AcBBM and AcLEC1 were ubiquitously expressed in direct SE (adventitious shoots and GGBs) the maximal expression of AcBBM in mature GGBs, and the high expression of AcLEC1 in GGB initiation and adventitious shoots. During the indirect SE, AcLBD16, AcLEC1, AcRKD, and AcWUS were highly expressed in mature calli. Additionally, phylogenetic analyses showed that AcWUS, AcBBM, AcLBD, AcAGL, AcRKD, and their homologs of other green plants formed monophyletic clades, respectively. Some of these gene families, however, diversified rapidly with the occurrence of embryophytes, suggesting that embryogenesis-associated genes could experience a rapid evolution with the colonization of plants to terrestrial environments. Expression and phylogenetic analyses of those embryogenesis-associated genes by the aid of in vitro regeneration system of A. capillus-veneris provide new insights into the evolution of reproductive organs in land plants.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 9 24%
Student > Ph. D. Student 6 16%
Researcher 5 13%
Other 2 5%
Student > Bachelor 2 5%
Other 3 8%
Unknown 11 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 45%
Biochemistry, Genetics and Molecular Biology 9 24%
Medicine and Dentistry 1 3%
Unknown 11 29%