↓ Skip to main content

Trait Associations in Diversity Panels of the Two Common Bean (Phaseolus vulgaris L.) Gene Pools Grown under Well-watered and Water-Stress Conditions

Overview of attention for article published in Frontiers in Plant Science, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Trait Associations in Diversity Panels of the Two Common Bean (Phaseolus vulgaris L.) Gene Pools Grown under Well-watered and Water-Stress Conditions
Published in
Frontiers in Plant Science, May 2017
DOI 10.3389/fpls.2017.00733
Pubmed ID
Authors

Asrat Asfaw, Daniel Ambachew, Trushar Shah, Matthew W. Blair

Abstract

Common beans are a warm-season, food legume cultivated in areas prone to water limitation throughout their growing season. This study assessed the magnitude and pattern of trait associations for a total of 202 common bean genotypes divided into panels of 81 Andean and 121 Mesoamerican gene pool accessions grown under contrasting treatments of well-watered, non-stress, and water-limited, terminal drought-stress conditions. Linear correlation, complex path coefficient, and genetic divergence analyses were used to dissect the relationship dynamics between traits and the relative contribution of adaptive traits to differentiation among gene pools and genotypes based on drought stress. Drought severity level for the trial was high and created the ideal condition to reveal genotypic differences, as seen by the differential response of the genotypes for the various traits measured. The value for phenotypic coefficients of variation for all traits was higher than the corresponding genotypic values. Seed yield had positive and strong genotypic and phenotypic correlation with pods per plant across gene pools and stress levels. The overall amount of genetic correlation was greater than the corresponding phenotypic correlation matrix for all the traits within the gene pool and across stress levels. Moreover, the results depicted the phenotypic correlation as equal or better than its genotypic counterpart in estimating drought tolerance in common bean plants. Clustering analysis with Mahanalobis's coefficient of generalized distance grouped genotypes with a differential level of drought adaptation into different classes within each panel. This indicates drought tolerance involves different mechanisms of plant response and is present separately in each gene pool panel. Pods per plant, seed weight, pod partitioning index, and harvest index are useful selection objectives to improve drought adaptation in common bean, but must be differentially weighted in each gene pool. The analysis of genetic variation and association between adaptive traits on the two panels provided useful insights on which traits could be used to improve common bean adaptation to low water availability during the growth season.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 68 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 20%
Student > Master 10 14%
Student > Ph. D. Student 10 14%
Student > Doctoral Student 5 7%
Student > Bachelor 4 6%
Other 6 9%
Unknown 20 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 35 51%
Biochemistry, Genetics and Molecular Biology 4 6%
Medicine and Dentistry 2 3%
Decision Sciences 1 1%
Chemistry 1 1%
Other 0 0%
Unknown 26 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 March 2018.
All research outputs
#15,332,207
of 23,577,654 outputs
Outputs from Frontiers in Plant Science
#9,915
of 21,632 outputs
Outputs of similar age
#186,622
of 311,851 outputs
Outputs of similar age from Frontiers in Plant Science
#337
of 619 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 21,632 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,851 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 619 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.