↓ Skip to main content

Cloning and Functional Analysis of MADS-box Genes, TaAG-A and TaAG-B, from a Wheat K-type Cytoplasmic Male Sterile Line

Overview of attention for article published in Frontiers in Plant Science, June 2017
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cloning and Functional Analysis of MADS-box Genes, TaAG-A and TaAG-B, from a Wheat K-type Cytoplasmic Male Sterile Line
Published in
Frontiers in Plant Science, June 2017
DOI 10.3389/fpls.2017.01081
Pubmed ID
Authors

Wenlong Yang, Xueyuan Lou, Juan Li, Mingyu Pu, Ameer A. Mirbahar, Dongcheng Liu, Jiazhu Sun, Kehui Zhan, Lixiong He, Aimin Zhang

Abstract

Wheat (Triticum aestivum L.) is a major crop worldwide. The utilization of heterosis is a promising approach to improve the yield and quality of wheat. Although there have been many studies on wheat cytoplasmic male sterility, its mechanism remains unclear. In this study, we identified two MADS-box genes from a wheat K-type cytoplasmic male sterile (CMS) line using homology-based cloning. These genes were localized on wheat chromosomes 3A and 3B and named TaAG-A and TaAG-B, respectively. Analysis of TaAG-A and TaAG-B expression patterns in leaves, spikes, roots, and stems of Chinese Spring wheat determined using quantitative RT-PCR revealed different expression levels in different tissues. TaAG-A had relatively high expression levels in leaves and spikes, but low levels in roots, while TaAG-B had relatively high expression levels in spikes and lower expression in roots, stems, and leaves. Both genes showed downregulation during the mononucleate to trinucleate stages of pollen development in the maintainer line. In contrast, upregulation of TaAG-B was observed in the CMS line. The transcript levels of the two genes were clearly higher in the CMS line compared to the maintainer line at the trinucleate stage. Overexpression of TaAG-A and TaAG-B in Arabidopsis resulted in phenotypes with earlier reproductive development, premature mortality, and abnormal buds, stamens, and stigmas. Overexpression of TaAG-A and TaAG-B gives rise to mutants with many deformities. Silencing TaAG-A and TaAG-B in a fertile wheat line using the virus-induced gene silencing (VIGS) method resulted in plants with green and yellow striped leaves, emaciated spikes, and decreased selfing seed set rates. These results demonstrate that TaAG-A and TaAG-B may play a role in male sterility in the wheat CMS line.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 18%
Professor > Associate Professor 2 18%
Lecturer > Senior Lecturer 2 18%
Unknown 5 45%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 36%
Neuroscience 1 9%
Medicine and Dentistry 1 9%
Unknown 5 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 July 2017.
All research outputs
#17,902,783
of 22,985,065 outputs
Outputs from Frontiers in Plant Science
#12,177
of 20,444 outputs
Outputs of similar age
#226,835
of 316,849 outputs
Outputs of similar age from Frontiers in Plant Science
#396
of 571 outputs
Altmetric has tracked 22,985,065 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,444 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,849 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 571 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.