↓ Skip to main content

Heterologous Expression of Panax ginseng PgTIP1 Confers Enhanced Salt Tolerance of Soybean Cotyledon Hairy Roots, Composite, and Whole Plants

Overview of attention for article published in Frontiers in Plant Science, July 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Heterologous Expression of Panax ginseng PgTIP1 Confers Enhanced Salt Tolerance of Soybean Cotyledon Hairy Roots, Composite, and Whole Plants
Published in
Frontiers in Plant Science, July 2017
DOI 10.3389/fpls.2017.01232
Pubmed ID
Authors

Jing An, Zhenmin Hu, Benning Che, Haiying Chen, Bingjun Yu, Weiming Cai

Abstract

The Panax ginseng TIP gene PgTIP1 was previously demonstrated to have high water channel activity by its heterologous expression in Xenopus laevis oocytes and in yeast; it also plays a significant role in growth of PgTIP1-transgenic Arabidopsis plants under favorable conditions and has enhanced tolerance toward salt and drought treatment. In this work, we first investigated the physiological effects of heterologous PgTIP1 expression in soybean cotyledon hairy roots or composite plants mediated by Agrobacterium rhizogenes toward enhanced salt tolerance. The PgTIP1-transgenic soybean plants mediated by the pollen tube pathway, represented by the lines N and J11, were analyzed at the physiological and molecular levels for enhanced salt tolerance. The results showed that in terms of root-specific heterologous expression, the PgTIP1-transformed soybean cotyledon hairy roots or composite plants displayed superior salt tolerance compared to the empty vector-transformed ones according to the mitigatory effects of hairy root growth reduction, drop in leaf RWC, and rise in REL under salt stress. Additionally, declines in K(+) content, increases in Na(+) content and Na(+)/K(+) ratios in the hairy roots, stems, or leaves were effectively alleviated by PgTIP1-transformation, particularly the stems and leaves of composite soybean plants. At the whole plant level, PgTIP1-trasgenic soybean lines were found to possess stronger root vigor, reduced root and leaf cell membrane damage, increased SOD, POD, CAT, and APX activities, steadily increased leaf Tr, RWC, and Pn values, and smaller declines in chlorophyll and carotenoid content when exposed to salt stress compared to wild type. Moreover, the distribution patterns of Na(+), K(+), and Cl(-) in the roots, stems, and leaves of salt-stressed transgenic plants were readjusted, in that the absorbed Na(+) and Cl(-) were mainly restricted to the roots to reduce their transport to the shoots, and the transport of root-absorbed K(+) to the shoots was simultaneously promoted. PgTIP1 transformation into soybean plants enhanced the expression of some stress-related genes (GmPOD, GmAPX1, GmSOS1, and GmCLC1) in the roots and leaves under salt treatment. This indicates that the causes of enhanced salt tolerance of heterologous PgTIP1-transformed soybean are associated with the positive regulation on water relations, ion homeostasis, and ROS scavenging under salt stress both at root-specific and whole plant levels.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 39%
Researcher 3 13%
Professor 2 9%
Student > Master 2 9%
Professor > Associate Professor 1 4%
Other 0 0%
Unknown 6 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 48%
Veterinary Science and Veterinary Medicine 1 4%
Biochemistry, Genetics and Molecular Biology 1 4%
Chemical Engineering 1 4%
Computer Science 1 4%
Other 1 4%
Unknown 7 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 August 2017.
All research outputs
#18,566,650
of 22,996,001 outputs
Outputs from Frontiers in Plant Science
#13,950
of 20,472 outputs
Outputs of similar age
#217,895
of 283,544 outputs
Outputs of similar age from Frontiers in Plant Science
#425
of 520 outputs
Altmetric has tracked 22,996,001 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,472 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,544 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 520 others from the same source and published within six weeks on either side of this one. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.