↓ Skip to main content

PIF4 Promotes Expression of LNG1 and LNG2 to Induce Thermomorphogenic Growth in Arabidopsis

Overview of attention for article published in Frontiers in Plant Science, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
PIF4 Promotes Expression of LNG1 and LNG2 to Induce Thermomorphogenic Growth in Arabidopsis
Published in
Frontiers in Plant Science, July 2017
DOI 10.3389/fpls.2017.01320
Pubmed ID
Authors

Geonhee Hwang, Jia-Ying Zhu, Young K. Lee, Sara Kim, Thom T. Nguyen, Jungmook Kim, Eunkyoo Oh

Abstract

Arabidopsis plants adapt to high ambient temperature by a suite of morphological changes including elongation of hypocotyls and petioles and leaf hyponastic growth. These morphological changes are collectively called thermomorphogenesis and are believed to increase leaf cooling capacity by enhancing transpiration efficiency, thereby increasing tolerance to heat stress. The bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) has been identified as a major regulator of thermomorphogenic growth. Here, we show that PIF4 promotes the expression of two homologous genes LONGIFOLIA1 (LNG1) and LONGIFOLIA2 (LNG2) that have been reported to regulate leaf morphology. ChIP-Seq analyses and ChIP assays showed that PIF4 directly binds to the promoters of both LNG1 and LNG2. The expression of LNG1 and LNG2 is induced by high temperature in wild type plants. However, the high temperature activation of LNG1 and LNG2 is compromised in the pif4 mutant, indicating that PIF4 directly regulates LNG1 and LNG2 expression in response to high ambient temperatures. We further show that the activities of LNGs support thermomorphogenic growth. The expression of auxin biosynthetic and responsive genes is decreased in the lng quadruple mutant, implying that LNGs promote thermomorphogenic growth by activating the auxin pathway. Together, our results demonstrate that LNG1 and LNG2 are directly regulated by PIF4 and are new components for the regulation of thermomorphogenesis.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 17%
Researcher 5 9%
Student > Master 4 7%
Student > Bachelor 4 7%
Student > Postgraduate 3 6%
Other 10 19%
Unknown 19 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 33%
Biochemistry, Genetics and Molecular Biology 15 28%
Environmental Science 1 2%
Unspecified 1 2%
Materials Science 1 2%
Other 0 0%
Unknown 18 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 September 2017.
All research outputs
#14,950,579
of 22,997,544 outputs
Outputs from Frontiers in Plant Science
#9,382
of 20,481 outputs
Outputs of similar age
#188,585
of 316,999 outputs
Outputs of similar age from Frontiers in Plant Science
#281
of 512 outputs
Altmetric has tracked 22,997,544 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,481 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,999 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 512 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.