↓ Skip to main content

Two FERONIA-Like Receptor Kinases Regulate Apple Fruit Ripening by Modulating Ethylene Production

Overview of attention for article published in Frontiers in Plant Science, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Two FERONIA-Like Receptor Kinases Regulate Apple Fruit Ripening by Modulating Ethylene Production
Published in
Frontiers in Plant Science, August 2017
DOI 10.3389/fpls.2017.01406
Pubmed ID
Authors

Meiru Jia, Ping Du, Ning Ding, Qing Zhang, Sinian Xing, Lingzhi Wei, Yaoyao Zhao, Wenwen Mao, Jizheng Li, Bingbing Li, Wensuo Jia

Abstract

Ethylene has long been known to be a critical signal controlling the ripening of climacteric fruits; however, the signaling mechanism underlying ethylene production during fruit development is unknown. Here, we report that two FERONIA-like receptor kinases (FERLs) regulate fruit ripening by modulating ethylene production in the climacteric fruit, apple (Malus×domestica). Bioinformatic analysis indicated that the apple genome contains 14 members of the FER family (MdFERL1-17), of these 17 FERLs, MdFERL6 was expressed at the highest level in fruit. Heterologous expression of MdFERL6 or MdFERL1, the apple homolog of Arabidopsis FER, in another climacteric fruit, tomato (Solanum lycopersicum) fruit delayed ripening and suppressed ethylene production. Overexpression and antisense expression of MdFERL6 in apple fruit calli inhibited and promoted ethylene production, respectively. Additionally, virus-induced gene silencing (VIGS) of SlFERL1, the tomato homolog of FER, promoted tomato fruit ripening and ethylene production. Both MdFERL6 and MdFERL1 physically interacted with MdSAMS (S-adenosylmethionine synthase), a key enzyme in the ethylene biosynthesis pathway. MdFERL6 was expressed at high levels during early fruit development, but dramatically declined when fruit ripening commenced, implying that MdFERL6 might limit ethylene production prior to fruit development and the ethylene production burst during fruit ripening. These results indicate that FERLs regulate apple and tomato fruit ripening, shedding light on the molecular mechanisms underlying ripening in climacteric fruit.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 21%
Other 3 9%
Student > Master 3 9%
Student > Bachelor 2 6%
Lecturer 2 6%
Other 5 15%
Unknown 11 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 36%
Biochemistry, Genetics and Molecular Biology 7 21%
Nursing and Health Professions 1 3%
Materials Science 1 3%
Unknown 12 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 September 2017.
All research outputs
#14,955,443
of 23,002,898 outputs
Outputs from Frontiers in Plant Science
#9,388
of 20,497 outputs
Outputs of similar age
#188,304
of 317,988 outputs
Outputs of similar age from Frontiers in Plant Science
#265
of 494 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,497 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,988 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 494 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.