↓ Skip to main content

Analysis of the Role of the Drought-Induced Gene DRI15 and Salinity-Induced Gene SI1 in Alternanthera philoxeroides Plasticity Using a Virus-Based Gene Silencing Tool

Overview of attention for article published in Frontiers in Plant Science, September 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Analysis of the Role of the Drought-Induced Gene DRI15 and Salinity-Induced Gene SI1 in Alternanthera philoxeroides Plasticity Using a Virus-Based Gene Silencing Tool
Published in
Frontiers in Plant Science, September 2017
DOI 10.3389/fpls.2017.01579
Pubmed ID
Authors

Chao Bai, Peng Wang, Qiang Fan, Wei-Dong Fu, Le Wang, Zhen-Nan Zhang, Zhen Song, Guo-Liang Zhang, Jia-He Wu

Abstract

Alternanthera philoxeroides is a notoriously invasive weed that can readily adapt to different environmental conditions. Control of this weed is difficult, and it spreads easily and causes damage to native habitats and agriculture. In this study, our goal was to investigate the molecular mechanisms that lead to the ability of A. philoxeroides to invade new habitats, to adapt to environmental stresses, and to cause damage. We developed a simple and highly effective potato virus X-based virus-induced gene silencing (VIGS) approach. The VIGS approach was first used to silence the phytoene desaturase gene, which resulted in the expected photo-bleaching phenotype. Next, the VIGS approach was used to silence two additional genes, drought-induced protein gene 15 (ApDRI15) and salinity-induced protein gene 1 (ApSI1). When ApDRI15 was knocked down, the plants were more sensitive to drought stress than the control plants, with smaller leaves, shorter internodes, and lower biomass. The ApDRI15-silenced plants had lower relative water content, lower free proline levels, and higher water loss rates than the control. Silencing of ApSI1 significantly decreased tolerance to salinity, and the ApSI1-silenced plants were withered and smaller. These results indicate that the pgR107 VIGS approach is a simple and highly effective tool for dissecting gene function in A. philoxeroides. Further experiments with the VIGS approach will enhance our understanding of the molecular mechanisms of the adaptability and plasticity of A. philoxeroides and improve our ability to combat the damage caused by this weed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 4 15%
Researcher 4 15%
Student > Bachelor 3 12%
Other 2 8%
Student > Master 2 8%
Other 3 12%
Unknown 8 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 46%
Biochemistry, Genetics and Molecular Biology 3 12%
Psychology 1 4%
Medicine and Dentistry 1 4%
Unknown 9 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 October 2017.
All research outputs
#18,574,814
of 23,006,268 outputs
Outputs from Frontiers in Plant Science
#13,967
of 20,507 outputs
Outputs of similar age
#242,470
of 316,013 outputs
Outputs of similar age from Frontiers in Plant Science
#353
of 476 outputs
Altmetric has tracked 23,006,268 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,507 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,013 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 476 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.