↓ Skip to main content

QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon (Cucumis melo L.)

Overview of attention for article published in Frontiers in Plant Science, September 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon (Cucumis melo L.)
Published in
Frontiers in Plant Science, September 2017
DOI 10.3389/fpls.2017.01679
Pubmed ID
Authors

Jason M. Argyris, Aurora Díaz, Valentino Ruggieri, Marta Fernández, Torben Jahrmann, Yves Gibon, Belén Picó, Ana M. Martín-Hernández, Antonio J. Monforte, Jordi Garcia-Mas

Abstract

Sugar content is the major determinant of both fruit quality and consumer acceptance in melon (Cucumis melo L), and is a primary target for crop improvement. Near-isogenic lines (NILs) derived from the intraspecific cross between a "Piel de Sapo" (PS) type and the exotic cultivar "Songwhan Charmi" (SC), and several populations generated from the cross of PS × Ames 24294 ("Trigonus"), a wild melon, were used to identify QTL related to sugar and organic acid composition. Seventy-eight QTL were detected across several locations and different years, with three important clusters related to sugar content located on chromosomes 4, 5, and 7. Two PS × SC NILs (SC5-1 and SC5-2) sharing a common genomic interval of 1.7 Mb at the top of chromosome 5 contained QTL reducing soluble solids content (SSC) and sucrose content by an average of 29 and 68%, respectively. This cluster collocated with QTL affecting sugar content identified in other studies in lines developed from the PS × SC cross and supported the presence of a stable consensus locus involved in sugar accumulation that we named SUCQSC5.1. QTL reducing soluble solids and sucrose content identified in the "Trigonus" mapping populations, as well as QTL identified in previous studies from other ssp. agrestis sources, collocated with SUCQSC5.1, suggesting that they may be allelic and implying a role in domestication. In subNILs derived from the PS × SC5-1 cross, SUCQSC5.1 reduced SSC and sucrose content by an average of 18 and 34%, respectively, and was fine-mapped to a 56.1 kb interval containing four genes. Expression analysis of the candidate genes in mature fruit showed differences between the subNILs with PS alleles that were "high" sugar and SC alleles of "low" sugar phenotypes for MELO3C014519, encoding a putative BEL1-like homeodomain protein. Sequence differences in the gene predicted to affect protein function were restricted to SC and other ssp. agrestis cultivar groups. These results provide the basis for further investigation of genes affecting sugar accumulation in melon.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 65 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 22%
Student > Ph. D. Student 12 18%
Student > Master 10 15%
Student > Doctoral Student 4 6%
Student > Bachelor 3 5%
Other 7 11%
Unknown 15 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 36 55%
Biochemistry, Genetics and Molecular Biology 11 17%
Computer Science 2 3%
Unknown 16 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 November 2017.
All research outputs
#12,860,930
of 23,003,906 outputs
Outputs from Frontiers in Plant Science
#5,241
of 20,501 outputs
Outputs of similar age
#147,049
of 320,403 outputs
Outputs of similar age from Frontiers in Plant Science
#143
of 482 outputs
Altmetric has tracked 23,003,906 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,501 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,403 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 482 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.