↓ Skip to main content

The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue

Overview of attention for article published in Frontiers in Plant Science, October 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue
Published in
Frontiers in Plant Science, October 2017
DOI 10.3389/fpls.2017.01747
Pubmed ID
Authors

Liang Zhang, Tao Hu, Erick Amombo, Guangyang Wang, Yan Xie, Jinmin Fu

Abstract

Tall fescue (Festuca arundinacea Schreb) is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd) on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition) or 44°C (heat stress) for 4 h. The results showed that exogenous Spd partially improved the quality of tall fescue leaves under normal temperature conditions. Nevertheless, after heat stress treatment, exogenous Spd significantly decreased the electrolyte leakage of tall fescue leaves. Spd also profoundly reduced the H2O2 and O2(⋅-) content and increased antioxidant enzymes activities. In addition, PAs can also regulate antioxidant enzymes activities including SOD, POD, and APX which could help to scavenge ROS. Moreover, application of Spd could also remarkably increase the chlorophyll content and had a positive effect on the chlorophyll α fluorescence transients under high temperature. The Spd reagent enhanced the performance of photosystem II (PSII) as observed by the JIP-test. Under heat stress, the Spd profoundly improved the partial potentials at the steps of energy bifurcations (PIABS and PItotal) and the quantum yields and efficiencies (φP0, δR0, φR0, and γRC). Exogenous Spd could also reduce the specific energy fluxes per QA(-) reducing PSII reaction center (RC) (TP0/RC and ET0/RC). Additionally, exogenous Spd improved the expression level of psbA and psbB, which encoded the proteins of PSII core reaction center complex. We infer that PAs can stabilize the structure of nucleic acids and protect RNA from the degradation of ribonuclease. In brief, our study indicates that exogenous Spd enhances the heat tolerance of tall fescue by maintaining cell membrane stability, increasing antioxidant enzymes activities, improving PSII, and relevant gene expression.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 20%
Student > Doctoral Student 2 13%
Student > Ph. D. Student 2 13%
Other 1 7%
Lecturer 1 7%
Other 3 20%
Unknown 3 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 47%
Biochemistry, Genetics and Molecular Biology 2 13%
Engineering 2 13%
Unknown 4 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 November 2017.
All research outputs
#20,452,930
of 23,008,860 outputs
Outputs from Frontiers in Plant Science
#16,393
of 20,507 outputs
Outputs of similar age
#283,330
of 324,842 outputs
Outputs of similar age from Frontiers in Plant Science
#400
of 477 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,507 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,842 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 477 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.