↓ Skip to main content

Conservation and Dispersion of Genes Conferring Resistance to Tomato Begomoviruses between Tomato and Pepper Genomes

Overview of attention for article published in Frontiers in Plant Science, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users
facebook
2 Facebook pages

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Conservation and Dispersion of Genes Conferring Resistance to Tomato Begomoviruses between Tomato and Pepper Genomes
Published in
Frontiers in Plant Science, November 2017
DOI 10.3389/fpls.2017.01803
Pubmed ID
Authors

Manisha Mangal, Arpita Srivastava, Rita Sharma, Pritam Kalia

Abstract

In the present climate change scenario, controlling plant disease through exploitation of host plant resistance could contribute toward the sustainable crop production and global food security. In this respect, the identification of new sources of resistance and utilization of genetic diversity within the species may help in the generation of cultivars with improved disease resistance. Begomoviruses namely, Tomato yellow leaf curl virus (TYLCV) and Chilli leaf curl virus (ChLCV) are known to cause major yield losses in several economically important crop plants of the family Solanaceae. Though co-occurrence, association and synergistic interactions among these viruses in the host plants is reported, whether orthologous genetic loci in related host plants could be responsible for conferring resistance to these viruses has not been investigated yet. Several loci including Ty1, Ty2, Ty3, Ty4, and ty5 have been reported to confer resistance to leaf curl viruses in tomato. Here, we examined the pepper orthologous markers, corresponding to these QTL regions, for polymorphism between ChLCV susceptible and resistant genotypes of pepper. Further, to examine if the polymorphic markers are segregating with the disease resistance, Bulk Segregant Analysis (BSA) was performed on F2 population derived from crosses between resistant and susceptible lines. However, none of the markers showed polymorphism in BSA suggesting that the tested markers are not linked to genes/QTLs responsible for conferring resistance to ChLCV in the selected genotypes. In silico analysis was performed to study the synteny and collinearity of genes located within these QTL regions in tomato and pepper genomes, which revealed that more than 60% genes located in Ty2 and Ty4, 13.71% genes in Ty1, 23.07% in Ty3, and 44.77% genes located within ty5 QTL region in tomato are conserved in pepper genome. However, despite such a high conservation in gene content, the linkage relationship in these regions seems to be greatly affected by gross rearrangements in both the species.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 33%
Student > Master 3 8%
Student > Doctoral Student 2 6%
Professor > Associate Professor 2 6%
Student > Bachelor 2 6%
Other 6 17%
Unknown 9 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 44%
Biochemistry, Genetics and Molecular Biology 4 11%
Social Sciences 2 6%
Environmental Science 1 3%
Computer Science 1 3%
Other 3 8%
Unknown 9 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 July 2018.
All research outputs
#14,369,953
of 23,011,300 outputs
Outputs from Frontiers in Plant Science
#8,256
of 20,507 outputs
Outputs of similar age
#184,140
of 331,367 outputs
Outputs of similar age from Frontiers in Plant Science
#227
of 485 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,507 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,367 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 485 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.