↓ Skip to main content

Cultivar Diversity of Grape Skin Polyphenol Composition and Changes in Response to Drought Investigated by LC-MS Based Metabolomics

Overview of attention for article published in Frontiers in Plant Science, October 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
79 Dimensions

Readers on

mendeley
115 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cultivar Diversity of Grape Skin Polyphenol Composition and Changes in Response to Drought Investigated by LC-MS Based Metabolomics
Published in
Frontiers in Plant Science, October 2017
DOI 10.3389/fpls.2017.01826
Pubmed ID
Authors

Lucie Pinasseau, Anna Vallverdú-Queralt, Arnaud Verbaere, Maryline Roques, Emmanuelle Meudec, Loïc Le Cunff, Jean-Pierre Péros, Agnès Ageorges, Nicolas Sommerer, Jean-Claude Boulet, Nancy Terrier, Véronique Cheynier

Abstract

Phenolic compounds represent a large family of plant secondary metabolites, essential for the quality of grape and wine and playing a major role in plant defense against biotic and abiotic stresses. Phenolic composition is genetically driven and greatly affected by environmental factors, including water stress. A major challenge for breeding of grapevine cultivars adapted to climate change and with high potential for wine-making is to dissect the complex plant metabolic response involved in adaptation mechanisms. A targeted metabolomics approach based on ultra high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QqQ-MS) analysis in the Multiple Reaction Monitoring (MRM) mode has been developed for high throughput profiling of the phenolic composition of grape skins. This method enables rapid, selective, and sensitive quantification of 96 phenolic compounds (anthocyanins, phenolic acids, stilbenoids, flavonols, dihydroflavonols, flavan-3-ol monomers, and oligomers…), and of the constitutive units of proanthocyanidins (i.e., condensed tannins), giving access to detailed polyphenol composition. It was applied on the skins of mature grape berries from a core-collection of 279 Vitis vinifera cultivars grown with or without watering to assess the genetic variation for polyphenol composition and its modulation by irrigation, in two successive vintages (2014-2015). Distribution of berry weights and δ13C values showed that non irrigated vines were subjected to a marked water stress in 2014 and to a very limited one in 2015. Metabolomics analysis of the polyphenol composition and chemometrics analysis of this data demonstrated an influence of water stress on the biosynthesis of different polyphenol classes and cultivar differences in metabolic response to water deficit. Correlation networks gave insight on the relationships between the different polyphenol metabolites and related biosynthetic pathways. They also established patterns of polyphenol response to drought, with different molecular families affected either positively or negatively in the different cultivars, with potential impact on grape and wine quality.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 115 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 115 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 25 22%
Student > Ph. D. Student 16 14%
Student > Master 10 9%
Student > Bachelor 10 9%
Student > Doctoral Student 5 4%
Other 15 13%
Unknown 34 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 40 35%
Biochemistry, Genetics and Molecular Biology 14 12%
Chemistry 7 6%
Engineering 3 3%
Environmental Science 2 2%
Other 5 4%
Unknown 44 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 December 2017.
All research outputs
#18,577,751
of 23,009,818 outputs
Outputs from Frontiers in Plant Science
#13,975
of 20,507 outputs
Outputs of similar age
#251,538
of 328,358 outputs
Outputs of similar age from Frontiers in Plant Science
#343
of 489 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,507 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,358 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 489 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.