↓ Skip to main content

Reduced Glutathione Mediates Pheno-Ultrastructure, Kinome and Transportome in Chromium-Induced Brassica napus L.

Overview of attention for article published in Frontiers in Plant Science, December 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reduced Glutathione Mediates Pheno-Ultrastructure, Kinome and Transportome in Chromium-Induced Brassica napus L.
Published in
Frontiers in Plant Science, December 2017
DOI 10.3389/fpls.2017.02037
Pubmed ID
Authors

Rafaqat A. Gill, Basharat Ali, Su Yang, Chaobo Tong, Faisal Islam, Muhammad Bilal Gill, Theodore M. Mwamba, Skhawat Ali, Bizeng Mao, Shengyi Liu, Weijun Zhou

Abstract

Chromium (Cr) as a toxic metal is widely used for commercial purposes and its residues have become a potential environmental threat to both human and plant health. Oilseed rape (Brassica napus L.) is one of the candidate plants that can absorb the considerable quantity of toxic metals from the soil. Here, we used two cultivars of B. napus cvs. ZS 758 (metal-tolerant) and Zheda 622 (metal-susceptible) to investigate the phenological attributes, cell ultrastructure, protein kinases (PKs) and molecular transporters (MTs) under the combined treatments of Cr stress and reduced glutathione (GSH). Seeds of these cultivars were grown in vitro at different treatments i.e., 0, 400 μM Cr, and 400 μM Cr + 1 mM GSH in control growth chamber for 6 days. Results had confirmed that Cr significantly reduced the plant length, stem and root, and fresh biomass such as leaf, stem and root. Cr noticeably caused the damages in leaf mesophyll cells. Exogenous application of GSH significantly recovered both phenological and cell structural damages in two cultivars under Cr stress. For the PKs, transcriptomic data advocated that Cr stress alone significantly increased the gene expressions of BnaA08g16610D, BnaCnng19320D, and BnaA08g00390D over that seen in controls (Ck). These genes encoded both nucleic acid and transition metal ion binding proteins, and protein kinase activity (PKA) and phosphotransferase activities in both cultivars. Similarly, the presence of Cr revealed elite MT genes [BnaA04g26560D, BnaA02g28130D, and BnaA02g01980D (novel)] that were responsible for water transmembrane transporter activity. However, GSH in combination with Cr stress significantly up-regulated the genes for PKs [such as BnaCnng69940D (novel) and BnaC08g49360D] that were related to PKA, signal transduction, and oxidoreductase activities. For MTs, BnaC01g29930D and BnaA07g14320D were responsible for secondary active transmembrane transporter and protein transporter activities that were expressed more in GSH treatment than either Ck or Cr-treated cells. In general, it can be concluded that cultivar ZS 758 is more tolerant toward Cr-induced stress than Zheda 622.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 14%
Student > Ph. D. Student 4 11%
Student > Doctoral Student 3 8%
Professor > Associate Professor 3 8%
Other 2 5%
Other 7 19%
Unknown 13 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 27%
Biochemistry, Genetics and Molecular Biology 4 11%
Engineering 2 5%
Nursing and Health Professions 1 3%
Immunology and Microbiology 1 3%
Other 3 8%
Unknown 16 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 January 2018.
All research outputs
#17,925,346
of 23,015,156 outputs
Outputs from Frontiers in Plant Science
#12,228
of 20,529 outputs
Outputs of similar age
#307,539
of 439,930 outputs
Outputs of similar age from Frontiers in Plant Science
#272
of 426 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,529 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,930 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 426 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.