↓ Skip to main content

Melatonin Is Involved in Regulation of Bermudagrass Growth and Development and Response to Low K+ Stress

Overview of attention for article published in Frontiers in Plant Science, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Melatonin Is Involved in Regulation of Bermudagrass Growth and Development and Response to Low K+ Stress
Published in
Frontiers in Plant Science, November 2017
DOI 10.3389/fpls.2017.02038
Pubmed ID
Authors

Liang Chen, Jibiao Fan, Zhengrong Hu, Xuebing Huang, Erick Amombo, Ao Liu, Aoyue Bi, Ke Chen, Yan Xie, Jinmin Fu

Abstract

Melatonin (N-acetyl-5-methoxytryptamine) plays critical roles in plant growth and development and during the response to multiple abiotic stresses. However, the roles of melatonin in plant response to K+ deficiency remain largely unknown. In the present study, we observed that the endogenous melatonin contents in bermudagrass were remarkably increased by low K+ (LK) treatment, suggesting that melatonin was involved in bermudagrass response to LK stress. Further phenotype analysis revealed that exogenous melatonin application conferred Bermudagrass enhanced tolerance to LK stress. Interestingly, exogenous melatonin application also promoted bermudagrass growth and development at normal condition. Furthermore, the K+ contents measurement revealed that melatonin-treated plants accumulated more K+ in both shoot (under both control and LK condition) and root tissues (under LK condition) compared with those of melatonin non-treated plants. Expression analysis indicated that the transcripts of K+ transport genes were significantly induced by exogenous melatonin treatment in bermudagrass under both control and LK stress conditions, especially under a combined treatment of LK stress and melatonin, which may increase accumulation of K+ content profoundly under LK stress and thereby contributed to the LK-tolerant phenotype. In addition, we investigated the role of melatonin in the regulation of photosystem II (PSII) activities under LK stress. The chlorophyll fluorescence transient (OJIP) curves were obviously higher in plants grown in LK with melatonin (LK+Mel) than those of plants grown in LK medium without melatonin application for 1 or 2 weeks, suggesting that melatonin plays important roles in PSII against LK stress. After a combined treatment of LK stress and melatonin, the values for performance indexes (PIABS, PITotal, and PICS), flux ratios (φP0, ΨE0, and φE0) and specific energy fluxes (ETO/RC) were significantly improved compared with those of LK stress alone, suggesting that melatonin plays positive roles in protecting PSII activity under LK stress. Collectively, this study reveals an important role of melatonin in regulating bermudagrass response to LK stress.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 33%
Student > Master 3 14%
Lecturer 2 10%
Student > Doctoral Student 1 5%
Researcher 1 5%
Other 0 0%
Unknown 7 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 38%
Nursing and Health Professions 3 14%
Biochemistry, Genetics and Molecular Biology 1 5%
Environmental Science 1 5%
Engineering 1 5%
Other 0 0%
Unknown 7 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 January 2018.
All research outputs
#14,088,972
of 23,015,156 outputs
Outputs from Frontiers in Plant Science
#7,381
of 20,523 outputs
Outputs of similar age
#228,778
of 438,556 outputs
Outputs of similar age from Frontiers in Plant Science
#194
of 436 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,523 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 438,556 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 436 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.