↓ Skip to main content

Genome-Wide Identification of Chalcone Reductase Gene Family in Soybean: Insight into Root-Specific GmCHRs and Phytophthora sojae Resistance

Overview of attention for article published in Frontiers in Plant Science, December 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-Wide Identification of Chalcone Reductase Gene Family in Soybean: Insight into Root-Specific GmCHRs and Phytophthora sojae Resistance
Published in
Frontiers in Plant Science, December 2017
DOI 10.3389/fpls.2017.02073
Pubmed ID
Authors

Caroline J. Sepiol, Jaeju Yu, Sangeeta Dhaubhadel

Abstract

Soybean (Glycine max [L.] Merr) is one of the main grain legumes worldwide. Soybean farmers lose billions of dollars' worth of yield annually due to root and stem rot disease caused by the oomycete Phytophthora sojae. Many strategies have been developed to combat the disease, however, these methods have proven ineffective in the long term. A more cost effective and durable approach is to select a trait naturally found in soybean that can increase resistance. One such trait is the increased production of phytoalexin glyceollins in soybean. Glyceollins are isoflavonoids, synthesized via the legume-specific branch of general phenylpropanoid pathway. The first key enzyme exclusively involved in glyceollin synthesis is chalcone reductase (CHR) which coacts with chalcone synthase for the production of isoliquiritigenin, the precursor for glyceollin biosynthesis. Here we report the identification of 14 putative CHR genes in soybean where 11 of them are predicted to be functional. Our results show that GmCHRs display tissue-specific gene expression, and that only root-specific GmCHRs are induced upon P. sojae infection. Among 4 root-specific GmCHRs, GmCHR2A is located near a QTL that is linked to P. sojae resistance suggesting GmCHR2A as a novel locus for partial resistance that can be utilized for resistance breeding.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 24%
Researcher 3 9%
Student > Master 3 9%
Lecturer 2 6%
Other 2 6%
Other 5 15%
Unknown 11 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 29%
Biochemistry, Genetics and Molecular Biology 5 15%
Chemical Engineering 1 3%
Unspecified 1 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 2 6%
Unknown 14 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 April 2018.
All research outputs
#7,312,888
of 24,137,933 outputs
Outputs from Frontiers in Plant Science
#4,253
of 22,546 outputs
Outputs of similar age
#138,580
of 447,765 outputs
Outputs of similar age from Frontiers in Plant Science
#110
of 427 outputs
Altmetric has tracked 24,137,933 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 22,546 research outputs from this source. They receive a mean Attention Score of 3.9. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 447,765 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 427 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.