↓ Skip to main content

The Dynamics of Energy Dissipation and Xanthophyll Conversion in Arabidopsis Indicate an Indirect Photoprotective Role of Zeaxanthin in Slowly Inducible and Relaxing Components of Non-photochemical…

Overview of attention for article published in Frontiers in Plant Science, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
59 Dimensions

Readers on

mendeley
114 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Dynamics of Energy Dissipation and Xanthophyll Conversion in Arabidopsis Indicate an Indirect Photoprotective Role of Zeaxanthin in Slowly Inducible and Relaxing Components of Non-photochemical Quenching of Excitation Energy
Published in
Frontiers in Plant Science, December 2017
DOI 10.3389/fpls.2017.02094
Pubmed ID
Authors

Eugen Kress, Peter Jahns

Abstract

The dynamics of non-photochemical quenching (NPQ) of chlorophyll fluorescence and the dynamics of xanthophyll conversion under different actinic light conditions were studied in intact leaves of Arabidopsis thaliana. NPQ induction was investigated during up to 180 min illumination at 450, 900, and 1,800 μmol photons m-2 s-1 (μE) and NPQ relaxation after 5, 30, 90, or 180 min of pre-illumination at the same light intensities. The comparison of wild-type plants with mutants affected either in xanthophyll conversion (npq1 and npq2) or PsbS expression (npq4 and L17) or lumen acidification (pgr1) indicated that NPQ states with similar, but not identical characteristics are induced at longer time range (15-60 min) in wild-type and mutant plants. In genotypes with an active xanthophyll conversion, the dynamics of two slowly (10-60 min) inducible and relaxing NPQ components were found to be kinetically correlated with zeaxanthin formation and epoxidation, respectively. However, the extent of NPQ was independent of the amount of zeaxanthin, since higher NPQ values were inducible with increasing actinic light intensities without pronounced changes in the zeaxanthin amount. These data support an indirect role of zeaxanthin in pH-independent NPQ states rather than a specific direct function of zeaxanthin as quencher in long-lasting NPQ processes. Such an indirect function might be related to an allosteric regulation of NPQ processes by zeaxanthin (e.g., through interaction of zeaxanthin at the surface of proteins) or a general photoprotective function of zeaxanthin in the lipid phase of the membrane (e.g., by modulation of the membrane fluidity or by acting as antioxidant). The found concomitant down-regulation of zeaxanthin epoxidation and recovery of photosystem II activity ensures that zeaxanthin is retained in the thylakoid membrane as long as photosystem II activity is inhibited or down-regulated. This regulation supports the view that zeaxanthin can be considered as a kind of light stress memory in chloroplasts, allowing a rapid reactivation of photoprotective NPQ processes in case of recurrent light stress periods.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 114 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 114 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 22%
Researcher 14 12%
Student > Master 13 11%
Student > Bachelor 8 7%
Student > Doctoral Student 6 5%
Other 12 11%
Unknown 36 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 41 36%
Biochemistry, Genetics and Molecular Biology 21 18%
Chemistry 7 6%
Medicine and Dentistry 5 4%
Computer Science 1 <1%
Other 3 3%
Unknown 36 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 December 2017.
All research outputs
#18,579,736
of 23,012,811 outputs
Outputs from Frontiers in Plant Science
#13,980
of 20,523 outputs
Outputs of similar age
#327,486
of 439,782 outputs
Outputs of similar age from Frontiers in Plant Science
#318
of 435 outputs
Altmetric has tracked 23,012,811 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,523 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,782 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 435 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.