↓ Skip to main content

Homozygote Depression in Gamete-Derived Dragon-Fruit (Hylocereus) Lines

Overview of attention for article published in Frontiers in Plant Science, January 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Homozygote Depression in Gamete-Derived Dragon-Fruit (Hylocereus) Lines
Published in
Frontiers in Plant Science, January 2018
DOI 10.3389/fpls.2017.02142
Pubmed ID
Authors

Daqing Li, Maria F. Arroyave Martinez, Ruth Shaked, Noemi Tel-Zur

Abstract

Putative gamete-derived progenies from two Hylocereus species, the diploid H. monacanthus and the tetraploid H. megalanthus, were studied with the dual aims to confirm their gamete origin and to evaluate their potential use as genetic resources. An additional goal was to determine the origin (allotetraploid vs. autotetraploid) of H. megalanthus by exploring morphological variations in the di-haploid (2x) H. megalanthus progeny. Gamete origin was proved in all five H. monacanthus lines obtained and in 49 of the 70 H. megalanthus lines by using flow cytometry and simple sequence repeat (SSR) markers. The five double-haploid (2x) H. monacanthus lines showed low vigor and abnormal flower development, with malformed ovules and aborted pollen grains. Only one flower set fruit, giving several viable seeds. For H. megalanthus, both abnormal ovules and defective anthers were observed in the di-haploid (2x) and double di-haploid (4x) lines. Among the 46 di-haploid lines, only 14 set fruit. Another 13 di-haploid lines formed flower buds that abscised before anthesis or soon after pollination. The severe sterility of the double-haploid H. monacanthus and the reduced fertility of all the di-haploid and double di-haploid H. megalanthus lines can be linked to their reduced heterozygosity, which drastically affected the development of normal female and male organs. We thus concluded that chromosome doubling, as occurred spontaneously in the double-haploid H. monacanthus and the double di-haploid H. megalanthus, is not sufficient to restore fertility in Hylocereus. We also observed very low gametoclonal variation among the di-haploid (2x) H. megalanthus lines, a finding that supported an autotetraploid, rather than an allotetraploid, origin of this species. Nonetheless, despite the above-described challenging limitations, these gamete-derived lines are currently being bred as the seed parent, offering unique possibilities for genetic research and additional breeding.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 16%
Student > Master 4 16%
Professor > Associate Professor 2 8%
Student > Doctoral Student 1 4%
Student > Ph. D. Student 1 4%
Other 3 12%
Unknown 10 40%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 24%
Engineering 3 12%
Nursing and Health Professions 1 4%
Business, Management and Accounting 1 4%
Unspecified 1 4%
Other 0 0%
Unknown 13 52%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 January 2018.
All research outputs
#17,927,741
of 23,018,998 outputs
Outputs from Frontiers in Plant Science
#12,229
of 20,534 outputs
Outputs of similar age
#310,298
of 441,879 outputs
Outputs of similar age from Frontiers in Plant Science
#292
of 440 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,534 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,879 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 440 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.