↓ Skip to main content

Maintenance of Cotton Leaf Curl Multan Betasatellite by Tomato Leaf Curl New Delhi Virus—Analysis by Mutation

Overview of attention for article published in Frontiers in Plant Science, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Maintenance of Cotton Leaf Curl Multan Betasatellite by Tomato Leaf Curl New Delhi Virus—Analysis by Mutation
Published in
Frontiers in Plant Science, December 2017
DOI 10.3389/fpls.2017.02208
Pubmed ID
Authors

Zafar Iqbal, Muhammad Shafiq, Irfan Ali, Shahid Mansoor, Rob W. Briddon

Abstract

Viruses of the genus Begomovirus (family Geminiviridae) are economically important phytopathogens that are transmitted plant-to-plant by the whitefly Bemisia tabaci. Most Old World (OW) begomoviruses are monopartite and many of these interact with symptoms and host range determining betasatellites. Tomato leaf curl New Delhi virus (ToLCNDV) is one of only a few OW begomoviruses with a bipartite genome (components known as DNA A and DNA B). Four genes [AV2, coat protein (CP), transcriptional-activator protein (TrAP), and AC4] of ToLCNDV were mutated and the effects of the mutations on infectivity, symptoms and the ability to maintain Cotton leaf curl Multan betasatellite (CLCuMuB) were investigated. Infectivity and virus/betasatellite DNA titer were assessed by Southern blot hybridization, PCR, and quantitative PCR. The results showed TrAP of ToLCNDV to be essential for maintenance of CLCuMuB and AV2 to be important only in the presence of the DNA B. AC4 was found to be important for the maintenance of CLCuMuB in the presence of, but indispensable in the absence of, the DNA B. Rather than being required for maintenance, the CP was shown to possibly interfere with maintenance of the betasatellite. The findings show that the interaction between a bipartite begomovirus and a betasatellite is more complex than just trans-replication. Clearly, multiple levels of interactions are present and such associations can cause additional significant losses to crops although the interaction may not be stable.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 21%
Researcher 3 10%
Student > Master 3 10%
Unspecified 2 7%
Other 1 3%
Other 4 14%
Unknown 10 34%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 34%
Biochemistry, Genetics and Molecular Biology 5 17%
Unspecified 2 7%
Immunology and Microbiology 1 3%
Unknown 11 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 December 2017.
All research outputs
#15,486,175
of 23,012,811 outputs
Outputs from Frontiers in Plant Science
#11,010
of 20,511 outputs
Outputs of similar age
#268,418
of 440,922 outputs
Outputs of similar age from Frontiers in Plant Science
#264
of 436 outputs
Altmetric has tracked 23,012,811 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,511 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,922 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 436 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.