↓ Skip to main content

Hydrological Conditions Affect the Interspecific Interaction between Two Emergent Wetland Species

Overview of attention for article published in Frontiers in Plant Science, January 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hydrological Conditions Affect the Interspecific Interaction between Two Emergent Wetland Species
Published in
Frontiers in Plant Science, January 2018
DOI 10.3389/fpls.2017.02253
Pubmed ID
Authors

Jian Zhou, Li-Di Zheng, Xu Pan, Wei Li, Xiao-Ming Kang, Jing Li, Yu Ning, Ming-Xiang Zhang, Li-Juan Cui

Abstract

Hydrological conditions determine the distribution of plant species in wetlands, where conditions such as water depth and hydrological fluctuations are expected to affect the interspecific interactions among emergent wetland species. To test such effects, we conducted a greenhouse experiment with three treatment categories, interspecific interaction (mixed culture or monoculture), water depth (10 or 30 cm depth), and hydrological fluctuation (static or fluctuating water level), and two common emergent wetland plant species, Scirpus planiculumis Fr. (Cyperaceae) and Phragmites australis var. baiyangdiansis (Gramineae). An increase in the water depth significantly restrained the growth of both S. planiculumis and P. australis, while hydrological fluctuations did not obviously alter the growth of either species. In addition, both water depth and hydrological fluctuations significantly affected the interspecific interaction between these two wetland species. P. australis benefited from interspecific interaction under increasing water depth and hydrological fluctuations, and the RII values were clearly positive for plants grown at a water depth that fluctuated around 30 cm. The results may have some implications for understanding how S. planiculumis and P. australis, as well as wetland communities, respond to the natural variation or human modification of hydrological conditions.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 13%
Lecturer 3 10%
Researcher 3 10%
Student > Bachelor 3 10%
Other 2 7%
Other 3 10%
Unknown 12 40%
Readers by discipline Count As %
Environmental Science 6 20%
Agricultural and Biological Sciences 5 17%
Engineering 2 7%
Psychology 1 3%
Unspecified 1 3%
Other 2 7%
Unknown 13 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 February 2018.
All research outputs
#20,465,050
of 23,023,224 outputs
Outputs from Frontiers in Plant Science
#16,427
of 20,547 outputs
Outputs of similar age
#406,045
of 473,649 outputs
Outputs of similar age from Frontiers in Plant Science
#383
of 445 outputs
Altmetric has tracked 23,023,224 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,547 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 473,649 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 445 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.