↓ Skip to main content

Genetic Dissection of End-Use Quality Traits in Adapted Soft White Winter Wheat

Overview of attention for article published in Frontiers in Plant Science, March 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genetic Dissection of End-Use Quality Traits in Adapted Soft White Winter Wheat
Published in
Frontiers in Plant Science, March 2018
DOI 10.3389/fpls.2018.00271
Pubmed ID
Authors

Kendra L. Jernigan, Jayfred V. Godoy, Meng Huang, Yao Zhou, Craig F. Morris, Kimberly A. Garland-Campbell, Zhiwu Zhang, Arron H. Carter

Abstract

Soft white wheat is used in domestic and foreign markets for various end products requiring specific quality profiles. Phenotyping for end-use quality traits can be costly, time-consuming and destructive in nature, so it is advantageous to use molecular markers to select experimental lines with superior traits. An association mapping panel of 469 soft white winter wheat cultivars and advanced generation breeding lines was developed from regional breeding programs in the U.S. Pacific Northwest. This panel was genotyped on a wheat-specific 90 K iSelect single nucleotide polymorphism (SNP) chip. A total of 15,229 high quality SNPs were selected and combined with best linear unbiased predictions (BLUPs) from historical phenotypic data of the genotypes in the panel. Genome-wide association mapping was conducted using the Fixed and random model Circulating Probability Unification (FarmCPU). A total of 105 significant marker-trait associations were detected across 19 chromosomes. Potentially new loci for total flour yield, lactic acid solvent retention capacity, flour sodium dodecyl sulfate sedimentation and flour swelling volume were also detected. Better understanding of the genetic factors impacting end-use quality enable breeders to more effectively discard poor quality germplasm and increase frequencies of favorable end-use quality alleles in their breeding populations.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 23%
Student > Doctoral Student 6 15%
Student > Master 4 10%
Researcher 3 8%
Student > Bachelor 2 5%
Other 7 18%
Unknown 9 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 25 63%
Engineering 2 5%
Biochemistry, Genetics and Molecular Biology 1 3%
Arts and Humanities 1 3%
Psychology 1 3%
Other 1 3%
Unknown 9 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2018.
All research outputs
#20,472,403
of 23,031,582 outputs
Outputs from Frontiers in Plant Science
#16,452
of 20,570 outputs
Outputs of similar age
#293,637
of 332,340 outputs
Outputs of similar age from Frontiers in Plant Science
#424
of 474 outputs
Altmetric has tracked 23,031,582 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,570 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,340 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 474 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.