↓ Skip to main content

AaEIN3 Mediates the Downregulation of Artemisinin Biosynthesis by Ethylene Signaling Through Promoting Leaf Senescence in Artemisia annua

Overview of attention for article published in Frontiers in Plant Science, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
AaEIN3 Mediates the Downregulation of Artemisinin Biosynthesis by Ethylene Signaling Through Promoting Leaf Senescence in Artemisia annua
Published in
Frontiers in Plant Science, April 2018
DOI 10.3389/fpls.2018.00413
Pubmed ID
Authors

Yueli Tang, Ling Li, Tingxiang Yan, Xueqing Fu, Pu Shi, Qian Shen, Xiaofen Sun, Kexuan Tang

Abstract

Artemisinin is an important drug for malaria treatment, which is exclusively produced in Artemisia annua. It's important to dissect the regulatory mechanism of artemisinin biosynthesis by diverse plant hormones and transcription factors. Our study shows ethylene, a plant hormone which accelerates flower and leaf senescence and fruit ripening, suppressed the expression of genes encoding three key enzymes ADS, DBR2, CYP71AV1, and a positive regulator AaORA involved in artemisinin biosynthesis. Then we isolated the gene encoding ETHYLENE-INSENSITIVE3 (EIN3), a key transcription factor in ethylene signaling pathway, by screening the transcriptome and genome database from Artemisia annua, named AaEIN3. Overexpressing AaEIN3 suppressed artemisinin biosynthesis, while repressing its expression with RNAi enhanced artemisinin biosynthesis in Artemisia annua, indicating AaEIN3 negatively regulates artemisinin biosynthesis. Further study showed the downregulation of artemisinin biosynthesis by ethylene required the mediation of AaEIN3. AaEIN3 could accelerate leaf senescence, and leaf senescence attenuated the expression of ADS, DBR2, CYP71AV1, and AaORA that are involved in artemisinin biosynthesis. Collectively, our study demonstrated a negative correlation between ethylene signaling and artemisinin biosynthesis, which is ascribed to AaEIN3-induced senescence process of leaves. Our work provided novel knowledge on the regulatory network of plant hormones for artemisinin metabolic pathway.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 25%
Student > Bachelor 3 15%
Student > Doctoral Student 2 10%
Lecturer 2 10%
Unspecified 1 5%
Other 2 10%
Unknown 5 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 25%
Agricultural and Biological Sciences 4 20%
Pharmacology, Toxicology and Pharmaceutical Science 3 15%
Chemical Engineering 1 5%
Unspecified 1 5%
Other 1 5%
Unknown 5 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 May 2018.
All research outputs
#14,107,269
of 23,047,237 outputs
Outputs from Frontiers in Plant Science
#7,402
of 20,616 outputs
Outputs of similar age
#180,418
of 329,680 outputs
Outputs of similar age from Frontiers in Plant Science
#215
of 449 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,616 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,680 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 449 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.