↓ Skip to main content

Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms

Overview of attention for article published in Frontiers in Plant Science, June 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
123 Dimensions

Readers on

mendeley
164 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms
Published in
Frontiers in Plant Science, June 2018
DOI 10.3389/fpls.2018.00866
Pubmed ID
Authors

Shichao Jin, Yanjun Su, Shang Gao, Fangfang Wu, Tianyu Hu, Jin Liu, Wenkai Li, Dingchang Wang, Shaojiang Chen, Yuanxi Jiang, Shuxin Pang, Qinghua Guo

Abstract

The rapid development of light detection and ranging (Lidar) provides a promising way to obtain three-dimensional (3D) phenotype traits with its high ability of recording accurate 3D laser points. Recently, Lidar has been widely used to obtain phenotype data in the greenhouse and field with along other sensors. Individual maize segmentation is the prerequisite for high throughput phenotype data extraction at individual crop or leaf level, which is still a huge challenge. Deep learning, a state-of-the-art machine learning method, has shown high performance in object detection, classification, and segmentation. In this study, we proposed a method to combine deep leaning and regional growth algorithms to segment individual maize from terrestrial Lidar data. The scanned 3D points of the training site were sliced row and row with a fixed 3D window. Points within the window were compressed into deep images, which were used to train the Faster R-CNN (region-based convolutional neural network) model to learn the ability of detecting maize stem. Three sites of different planting densities were used to test the method. Each site was also sliced into many 3D windows, and the testing deep images were generated. The detected stem in the testing images can be mapped into 3D points, which were used as seed points for the regional growth algorithm to grow individual maize from bottom to up. The results showed that the method combing deep leaning and regional growth algorithms was promising in individual maize segmentation, and the values of r, p, and F of the three testing sites with different planting density were all over 0.9. Moreover, the height of the truly segmented maize was highly correlated to the manually measured height (R2> 0.9). This work shows the possibility of using deep leaning to solve the individual maize segmentation problem from Lidar data.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 164 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 164 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 16%
Student > Master 22 13%
Researcher 19 12%
Student > Doctoral Student 9 5%
Student > Bachelor 6 4%
Other 24 15%
Unknown 58 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 18%
Computer Science 25 15%
Engineering 20 12%
Environmental Science 10 6%
Earth and Planetary Sciences 2 1%
Other 10 6%
Unknown 68 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 June 2018.
All research outputs
#12,785,398
of 23,092,602 outputs
Outputs from Frontiers in Plant Science
#5,074
of 20,702 outputs
Outputs of similar age
#151,928
of 328,678 outputs
Outputs of similar age from Frontiers in Plant Science
#140
of 476 outputs
Altmetric has tracked 23,092,602 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,702 research outputs from this source. They receive a mean Attention Score of 3.9. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,678 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 476 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.