↓ Skip to main content

Development of Target Sequence Capture and Estimation of Genomic Relatedness in a Mixed Oak Stand

Overview of attention for article published in Frontiers in Plant Science, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (71st percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
12 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Development of Target Sequence Capture and Estimation of Genomic Relatedness in a Mixed Oak Stand
Published in
Frontiers in Plant Science, July 2018
DOI 10.3389/fpls.2018.00996
Pubmed ID
Authors

Isabelle Lesur, Hermine Alexandre, Christophe Boury, Emilie Chancerel, Christophe Plomion, Antoine Kremer

Abstract

Anticipating the evolutionary responses of long-lived organisms, such as trees, to environmental changes, requires the assessment of genetic variation of adaptive traits in natural populations. To this end, high-density markers are needed to calculate genomic relatedness between individuals allowing to estimate the genetic variance of traits in wild populations. We designed a targeted capture-based, next-generation sequencing assay based on the highly heterozygous pedunculate oak (Quercus robur) reference genome, for the sequencing of 3 Mb of genic and intergenic regions. Using a mixed stand of 293 Q. robur and Q. petraea genotypes we successfully captured over 97% of the target sequences, corresponding to 0.39% of the oak genome, with sufficient depth (97×) for the detection of about 190,000 SNPs evenly spread over the targeted regions. We validated the technique by evaluating its reproducibility, and comparing the genomic relatedness of trees with their known pedigree relationship. We explored the use of the technique on other related species and highlighted the advantages and limitations of this approach. We found that 92.07% of target sequences in Q. suber and 70.36% of sequences in Fagus sylvatica were captured. We used this SNP resource to estimate genetic relatedness in the mixed oak stand. Mean pairwise genetic relatedness was low within each species with a few values exceeding 0.25 (half-sibs) or 0.5 (full-sibs). Finally, we applied the technique to a long-standing issue in population genetics of trees regarding the relationship between inbreeding and components of fitness. We found very weak signals for inbreeding depression for reproductive success and no signal for growth within both species.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 32%
Student > Master 8 26%
Student > Ph. D. Student 3 10%
Student > Bachelor 1 3%
Professor 1 3%
Other 4 13%
Unknown 4 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 52%
Biochemistry, Genetics and Molecular Biology 4 13%
Medicine and Dentistry 2 6%
Psychology 1 3%
Environmental Science 1 3%
Other 0 0%
Unknown 7 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2018.
All research outputs
#5,501,405
of 23,096,849 outputs
Outputs from Frontiers in Plant Science
#2,665
of 20,713 outputs
Outputs of similar age
#93,088
of 327,048 outputs
Outputs of similar age from Frontiers in Plant Science
#94
of 487 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 20,713 research outputs from this source. They receive a mean Attention Score of 3.9. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,048 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 487 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.