↓ Skip to main content

Phosphorus Nutrition Affects Temperature Response of Soybean Growth and Canopy Photosynthesis

Overview of attention for article published in Frontiers in Plant Science, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Phosphorus Nutrition Affects Temperature Response of Soybean Growth and Canopy Photosynthesis
Published in
Frontiers in Plant Science, August 2018
DOI 10.3389/fpls.2018.01116
Pubmed ID
Authors

Shardendu K. Singh, Vangimalla R. Reddy, David H. Fleisher, Dennis J. Timlin

Abstract

In nature, crops such as soybean are concurrently exposed to temperature (T) stress and phosphorus (P) deficiency. However, there is a lack of reports regarding soybean response to T × P interaction. To fill in this knowledge-gap, soybean was grown at four daily mean T of 22, 26, 30, and 34°C (moderately low, optimum, moderately high, and high temperature, respectively) each under sufficient (0.5 mM) and deficient (0.08 mM) P nutrition for the entire season. Phosphorus deficiency exacerbated the low temperature stress, with further restrictions on growth and net photosynthesis. For P deficient soybean at above optimum temperature (OT) regimes, growth, and photosynthesis was maintained at levels close to those of P sufficient plants, despite a lower tissue P concentration. P deficiency consistently decreased plant tissue P concentration ≈55% across temperatures while increasing intrinsic P utilization efficiency of canopy photosynthesis up to 147%, indicating a better utilization of tissue P. Warmer than OTs delayed the time to anthesis by 8-14 days and pod development similarly across P levels. However, biomass partitioning to pods was greater under P deficiency. There were significant T × P interactions for traits such as plant growth rates, total leaf area, biomass partitioning, and dry matter production, which resulted a distinct T response of soybean growth between sufficient and deficient P nutrition. Under sufficient P level, both lower and higher than optimum T tended to decrease total dry matter production and canopy photosynthesis. However, under P-deficient condition, this decrease was primarily observed at the low T. Thus, warmer than optimum T of this study appeared to compensate for decreases in soybean canopy photosynthesis and dry matter accumulation resulting from P deficiency. However, warmer than OT appeared to adversely affect reproductive structures, such as pod development, across P fertilization. This occurred despite adaptations, especially the increased P utilization efficiency and biomass partitioning to pods, shown by soybean under P deficiency.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 57 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 16%
Student > Master 5 9%
Student > Doctoral Student 5 9%
Student > Bachelor 4 7%
Unspecified 4 7%
Other 10 18%
Unknown 20 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 39%
Environmental Science 4 7%
Unspecified 3 5%
Biochemistry, Genetics and Molecular Biology 3 5%
Engineering 2 4%
Other 0 0%
Unknown 23 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 September 2018.
All research outputs
#13,549,267
of 23,100,534 outputs
Outputs from Frontiers in Plant Science
#6,535
of 20,728 outputs
Outputs of similar age
#168,015
of 330,721 outputs
Outputs of similar age from Frontiers in Plant Science
#190
of 484 outputs
Altmetric has tracked 23,100,534 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,728 research outputs from this source. They receive a mean Attention Score of 3.9. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,721 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 484 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.