↓ Skip to main content

Simulation of Soil Organic Carbon Effects on Long-Term Winter Wheat (Triticum aestivum) Production Under Varying Fertilizer Inputs

Overview of attention for article published in Frontiers in Plant Science, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Simulation of Soil Organic Carbon Effects on Long-Term Winter Wheat (Triticum aestivum) Production Under Varying Fertilizer Inputs
Published in
Frontiers in Plant Science, August 2018
DOI 10.3389/fpls.2018.01158
Pubmed ID
Authors

Bhim B. Ghaley, Henk Wösten, Jørgen E. Olesen, Kirsten Schelde, Sanmohan Baby, Yubaraj K. Karki, Christen D. Børgesen, Pete Smith, Jagadeesh Yeluripati, Roberto Ferrise, Marco Bindi, Peter Kuikman, Jan-Peter Lesschen, John R. Porter

Abstract

Soil organic carbon (SOC) has a vital role to enhance agricultural productivity and for mitigation of climate change. To quantify SOC effects on productivity, process models serve as a robust tool to keep track of multiple plant and soil factors and their interactions affecting SOC dynamics. We used soil-plant-atmospheric model viz. DAISY, to assess effects of SOC on nitrogen (N) supply and plant available water (PAW) under varying N fertilizer rates in winter wheat (Triticum aestivum) in Denmark. The study objective was assessment of SOC effects on winter wheat grain and aboveground biomass accumulation at three SOC levels (low: 0.7% SOC; reference: 1.3% SOC; and high: 2% SOC) with five nitrogen rates (0-200 kg N ha-1) and PAW at low, reference, and high SOC levels. The three SOC levels had significant effects on grain yields and aboveground biomass accumulation at only 0-100 kg N ha-1 and the SOC effects decreased with increasing N rates until no effects at 150-200 kg N ha-1. PAW had significant positive correlation with SOC content, with high SOC retaining higher PAW compared to low and reference SOC. The mean PAW and SOC correlation was given by PAW% = 1.0073 × SOC% + 15.641. For the 0.7-2% SOC range, the PAW increase was small with no significant effects on grain yields and aboveground biomass accumulation. The higher winter wheat grain and aboveground biomass was attributed to higher N supply in N deficient wheat production system. Our study suggested that building SOC enhances agronomic productivity at only 0-100 kg N ha-1. Maintenance of SOC stock will require regular replenishment of SOC, to compensate for the mineralization process degrading SOC over time. Hence, management can maximize realization of SOC benefits by building up SOC and maintaining N rates in the range 0-100 kg N ha-1, to reduce the off-farm N losses depending on the environmental zones, land use and the production system.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 24%
Student > Master 6 12%
Student > Bachelor 4 8%
Professor 4 8%
Student > Ph. D. Student 4 8%
Other 8 16%
Unknown 13 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 31%
Environmental Science 10 20%
Earth and Planetary Sciences 2 4%
Business, Management and Accounting 1 2%
Mathematics 1 2%
Other 4 8%
Unknown 17 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2018.
All research outputs
#13,624,398
of 23,099,576 outputs
Outputs from Frontiers in Plant Science
#6,774
of 20,724 outputs
Outputs of similar age
#169,684
of 331,157 outputs
Outputs of similar age from Frontiers in Plant Science
#198
of 485 outputs
Altmetric has tracked 23,099,576 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,724 research outputs from this source. They receive a mean Attention Score of 3.9. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,157 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 485 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.