↓ Skip to main content

Generalist and Specialist Mite Herbivores Induce Similar Defense Responses in Maize and Barley but Differ in Susceptibility to Benzoxazinoids

Overview of attention for article published in Frontiers in Plant Science, August 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Generalist and Specialist Mite Herbivores Induce Similar Defense Responses in Maize and Barley but Differ in Susceptibility to Benzoxazinoids
Published in
Frontiers in Plant Science, August 2018
DOI 10.3389/fpls.2018.01222
Pubmed ID
Authors

Huyen Bui, Robert Greenhalgh, Alice Ruckert, Gunbharpur S. Gill, Sarah Lee, Ricardo A. Ramirez, Richard M. Clark

Abstract

While substantial progress has been made in understanding defense responses of cereals to insect herbivores, comparatively little is known about responses to feeding by spider mites. Nevertheless, several spider mite species, including the generalist Tetranychus urticae and the grass specialist Oligonychus pratensis, cause damage on cereals such as maize and wheat, especially during drought stress. To understand defense responses of cereals to spider mites, we characterized the transcriptomic responses of maize and barley to herbivory by both mite species, and included a wounding control against which modulation of defenses could be tested. T. urticae and O. pratensis induced highly correlated changes in gene expression on both maize and barley. Within 2 h, hundreds of genes were upregulated, and thousands of genes were up- or downregulated after 24 h. In general, expression changes were similar to those induced by wounding, including for genes associated with jasmonic acid biosynthesis and signaling. Many genes encoding proteins involved in direct defenses, or those required for herbivore-induced plant volatiles, were strongly upregulated in response to mite herbivory. Further, biosynthesis genes for benzoxazinoids, which are specialized compounds of Poaceae with known roles in deterring insect herbivores, were induced in maize. Compared to chewing insects, spider mites are cell content feeders and cause grossly different patterns of tissue damage. Nonetheless, the gene expression responses of maize to both mite herbivores, including for phytohormone signaling pathways and for the synthesis of the benzoxazinoid 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside, a known defensive metabolite against caterpillars, resembled those reported for a generalist chewing insect, Spodoptera exigua. On maize plants harboring mutations in several benzoxazinoid biosynthesis genes, T. urticae performance dramatically increased compared to wild-type plants. In contrast, no difference in performance was observed between mutant and wild-type plants for the specialist O. pratensis. Collectively, our data provide little evidence that maize and barley defense responses differentiate herbivory between T. urticae and O. pratensis. Further, our work suggests that the likely route to specialization for O. pratensis involved the evolution of a robust mechanism to cope with the benzoxazinoid defenses of its cereal hosts.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 23%
Student > Master 12 19%
Student > Bachelor 9 15%
Researcher 5 8%
Professor > Associate Professor 3 5%
Other 10 16%
Unknown 9 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 37 60%
Biochemistry, Genetics and Molecular Biology 7 11%
Chemistry 2 3%
Immunology and Microbiology 1 2%
Unspecified 1 2%
Other 2 3%
Unknown 12 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 September 2018.
All research outputs
#20,532,290
of 23,103,436 outputs
Outputs from Frontiers in Plant Science
#16,596
of 20,728 outputs
Outputs of similar age
#290,881
of 333,772 outputs
Outputs of similar age from Frontiers in Plant Science
#400
of 457 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,728 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,772 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 457 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.