↓ Skip to main content

Comparative Physiological and Transcriptomic Analyses Reveal Altered Fe-Deficiency Responses in Tomato Epimutant Colorless Non-ripening

Overview of attention for article published in Frontiers in Plant Science, January 2022
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative Physiological and Transcriptomic Analyses Reveal Altered Fe-Deficiency Responses in Tomato Epimutant Colorless Non-ripening
Published in
Frontiers in Plant Science, January 2022
DOI 10.3389/fpls.2021.796893
Pubmed ID
Authors

Wei Wei Chen, Hui Hui Zhu, Jia Yi Wang, Guang Hao Han, Ru Nan Huang, Yi Guo Hong, Jian Li Yang

Abstract

The mechanisms associated with the regulation of iron (Fe) homeostasis have been extensively examined, however, epigenetic regulation of these processes remains largely unknown. Here, we report that a naturally occurring epigenetic mutant, Colorless non-ripening (Cnr), displayed increased Fe-deficiency responses compared to its wild-type Ailsa Craig (AC). RNA-sequencing revealed that a total of 947 and 1,432 genes were up-regulated by Fe deficiency in AC and Cnr roots, respectively, while 923 and 1,432 genes were, respectively, down-regulated. Gene ontology analysis of differentially expressed genes showed that genes encoding enzymes, transporters, and transcription factors were preferentially affected by Fe deficiency. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed differential metabolic responses to Fe deficiency between AC and Cnr. Based on comparative transcriptomic analyses, 24 genes were identified as potential targets of Cnr epimutation, and many of them were found to be implicated in Fe homeostasis. By developing CRISPR/Cas9 genome editing SlSPL-CNR knockout (KO) lines, we found that some Cnr-mediated Fe-deficiency responsive genes showed similar expression patterns between SlSPL-CNR KO plants and the Cnr epimutant. Moreover, both two KO lines displayed Fe-deficiency-induced chlorosis more severe than AC plants. Additionally, the Cnr mutant displayed hypermethylation in the 286-bp epi-mutated region on the SlSPL-CNR promoter, which contributes to repressed expression of SlSPL-CNR when compared with AC plants. However, Fe-deficiency induced no change in DNA methylation both at the 286-bp epi-allele region and the entire region of SlSPL-CNR gene. Taken together, using RNA-sequencing and genetic approaches, we identified Fe-deficiency responsive genes in tomato roots, and demonstrated that SlSPL-CNR is a novel regulator of Fe-deficiency responses in tomato, thereby, paving the way for further functional characterization and regulatory network dissection.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 11%
Student > Bachelor 1 11%
Researcher 1 11%
Unknown 6 67%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 22%
Agricultural and Biological Sciences 1 11%
Unknown 6 67%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 February 2022.
All research outputs
#14,371,722
of 23,122,481 outputs
Outputs from Frontiers in Plant Science
#8,072
of 20,762 outputs
Outputs of similar age
#240,124
of 502,875 outputs
Outputs of similar age from Frontiers in Plant Science
#327
of 1,034 outputs
Altmetric has tracked 23,122,481 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,762 research outputs from this source. They receive a mean Attention Score of 3.9. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 502,875 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 1,034 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.