↓ Skip to main content

Spatial warping by oriented line detectors can counteract neural delays

Overview of attention for article published in Frontiers in Psychology, January 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
3 X users
facebook
2 Facebook pages
wikipedia
3 Wikipedia pages
googleplus
1 Google+ user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
16 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spatial warping by oriented line detectors can counteract neural delays
Published in
Frontiers in Psychology, January 2013
DOI 10.3389/fpsyg.2013.00794
Pubmed ID
Authors

Don A. Vaughn, David M. Eagleman

Abstract

The slow speed of neural transmission necessitates that cortical visual information from dynamic scenes will lag reality. The "perceiving the present" (PTP) hypothesis suggests that the visual system can mitigate the effect of such delays by spatially warping scenes to look as they will in ~100 ms from now (Changizi, 2001). We here show that the Hering illusion, in which straight lines appear bowed, can be induced by a background of optic flow, consistent with the PTP hypothesis. However, importantly, the bowing direction is the same whether the flow is inward or outward. This suggests that if the warping is meant to counteract latencies, it is accomplished by a simple strategy that is insensitive to motion direction, and that works only under typical (forward-moving) circumstances. We also find that the illusion strengthens with longer pulses of optic flow, demonstrating motion integration over ~80 ms. The illusion is identical whether optic flow precedes or follows the flashing of bars, exposing the spatial warping to be equally postdictive and predictive, i.e., peri-dictive. Additionally, the illusion is diminished by cues which suggest the bars are independent of the background movement. Collectively, our findings are consistent with a role for networks of visual orientation-tuned neurons (e.g., simple cells in primary visual cortex) in spatial warping. We conclude that under the common condition of forward ego-motion, spatial warping counteracts the disadvantage of neural latencies. It is not possible to prove that this is the purpose of spatial warping, but our findings at minimum place constraints on the PTP hypothesis, demonstrating that any spatial warping for the purpose of counteracting neural delays is not a precise, on-the-fly computation, but instead a heuristic achieved by a simple mechanism that succeeds under normal circumstances.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 6%
Unknown 15 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 25%
Student > Doctoral Student 2 13%
Student > Master 2 13%
Student > Bachelor 1 6%
Researcher 1 6%
Other 1 6%
Unknown 5 31%
Readers by discipline Count As %
Psychology 6 38%
Neuroscience 2 13%
Computer Science 1 6%
Medicine and Dentistry 1 6%
Physics and Astronomy 1 6%
Other 0 0%
Unknown 5 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 July 2019.
All research outputs
#4,682,780
of 22,729,647 outputs
Outputs from Frontiers in Psychology
#7,603
of 29,554 outputs
Outputs of similar age
#50,672
of 280,769 outputs
Outputs of similar age from Frontiers in Psychology
#352
of 969 outputs
Altmetric has tracked 22,729,647 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 29,554 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,769 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 969 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.