↓ Skip to main content

The “Smart Dining Table”: Automatic Behavioral Tracking of a Meal with a Multi-Touch-Computer

Overview of attention for article published in Frontiers in Psychology, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The “Smart Dining Table”: Automatic Behavioral Tracking of a Meal with a Multi-Touch-Computer
Published in
Frontiers in Psychology, February 2016
DOI 10.3389/fpsyg.2016.00142
Pubmed ID
Authors

Sean Manton, Greta Magerowski, Laura Patriarca, Miguel Alonso-Alonso

Abstract

Studying how humans eat in the context of a meal is important to understanding basic mechanisms of food intake regulation and can help develop new interventions for the promotion of healthy eating and prevention of obesity and eating disorders. While there are a number of methodologies available for behavioral evaluation of a meal, there is a need for new tools that can simplify data collection through automatic and online analysis. Also, there are currently no methods that leverage technology to add a dimension of interactivity to the meal table. In this study, we examined the feasibility of a new technology for automatic detection and classification of bites during a laboratory meal. We used a SUR40 multi-touch tabletop computer, powered by an infrared camera behind the screen. Tags were attached to three plates, allowing their positions to be tracked, and the saturation (a measure of the infrared intensity) in the surrounding region was measured. A Kinect camera was used to record the meals for manual verification and provide gesture detection for when the bites were taken. Bite detections triggered classification of the source plate by the SUR40 based on saturation flux in the preceding time window. Five healthy subjects (aged 20-40 years, one female) were tested, providing a total sample of 320 bites. Sensitivity, defined as the number of correctly detected bites out of the number of actual bites, was 67.5%. Classification accuracy, defined as the number of correctly classified bites out of those detected, was 82.4%. Due to the poor sensitivity, a second experiment was designed using a single plate and a Myo armband containing a nine-axis accelerometer as an alternative method for bite detection. The same subjects were tested (sample: 195 bites). Using a simple threshold on the pitch reading of the magnetometer, the Myo data achieved 86.1% sensitivity vs. 60.5% with the Kinect. Further, the precision of positive predictive value was 72.1% for the Myo vs. 42.8% for the Kinect. We conclude that the SUR40 + Myo combination is feasible for automatic detection and classification of bites with adequate accuracy for a range of applications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 2%
Unknown 42 98%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 19%
Researcher 7 16%
Student > Master 6 14%
Student > Doctoral Student 3 7%
Lecturer 2 5%
Other 6 14%
Unknown 11 26%
Readers by discipline Count As %
Medicine and Dentistry 6 14%
Engineering 5 12%
Psychology 4 9%
Nursing and Health Professions 4 9%
Design 4 9%
Other 7 16%
Unknown 13 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 July 2016.
All research outputs
#13,766,674
of 22,852,911 outputs
Outputs from Frontiers in Psychology
#13,917
of 29,874 outputs
Outputs of similar age
#199,922
of 400,586 outputs
Outputs of similar age from Frontiers in Psychology
#277
of 471 outputs
Altmetric has tracked 22,852,911 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 29,874 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 400,586 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 471 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.